GROUND STATE SOLUTIONS TO A CLASS OF FRACTIONAL SCHRODINGER EQUATION WITH HARDY POTENTIAL

被引:0
作者
Du, Xinsheng [1 ]
Wang, Shanshan [1 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
来源
MATHEMATICAL FOUNDATIONS OF COMPUTING | 2024年
关键词
Fractional Schro<spacing diaeresis>dinger equation; Hardy potential; ground state;
D O I
10.3934/mfc.2024045
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we are concerned with the existence of solutions to the following fractional Schro<spacing diaeresis>dinger equation in R 3 with Hardy potential (-A)su + (|x|2s+ beta )u + lambda ( | x | 2 s - 3 * | u | 2 ) u = omega u+|u|p-1u, x E R3, | x | s where p E (1, 2), s E ( 3 4 , 1) and beta, lambda, omega E R are parameters. Under some suitable assumptions on the parameters, we prove the existence of the ground states solutions or normalized solutions to the above equation by variational methods.
引用
收藏
页数:11
相关论文
共 16 条
[1]   NUMERICAL SIMULATIONS OF X-RAY FREE ELECTRON LASERS (XFEL) [J].
Antonelli, Paolo ;
Athanassoulis, Agissilaos ;
Huang, Zhongyi ;
Markowich, Peter A. .
MULTISCALE MODELING & SIMULATION, 2014, 12 (04) :1607-1621
[2]   On the XFEL Schrodinger Equation: Highly Oscillatory Magnetic Potentials and Time Averaging [J].
Antonelli, Paolo ;
Athanassoulis, Agisillaos ;
Hajaiej, Hichem ;
Markowich, Peter .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 211 (03) :711-732
[3]  
Applebaum D., 2004, Not. Am. Math. Soc, V51, P1336
[4]   Fractional Hardy-Sobolev equations with nonhomogeneous terms [J].
Bhakta, Mousomi ;
Chakraborty, Souptik ;
Pucci, Patrizia .
ADVANCES IN NONLINEAR ANALYSIS, 2021, 10 (01) :1086-1116
[5]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[6]   OPTIMAL BILINEAR CONTROL FOR THE X-RAY FREE ELECTRON LASER SCHRODINGER EQUATION [J].
Feng, Binhua ;
ZhaO, Dun .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2019, 57 (05) :3193-3222
[7]   Γ-limit of a phase-field model of dislocations [J].
Garroni, A ;
Müller, S .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 36 (06) :1943-1964
[8]  
Giovanni M. B., 2016, Variational Mathods for Nonlocal Fractional Problems
[9]   Ground state for the X-ray free electron laser Schrodinger equation with harmonic potential [J].
Han, Huan ;
Li, Fanghui ;
Luo, Tingjian ;
Wang, Zhengping .
APPLIED MATHEMATICS AND COMPUTATION, 2021, 401
[10]  
Ianni I, 2013, TOPOL METHOD NONL AN, V41, P365