Secure and transparent energy management using blockchain and machine learning anomaly detection: A case study of the Ausgrid dataset

被引:0
|
作者
Moumni, Nourchen
Chaabane, Faten [2 ,4 ]
Drira, Fadoua [1 ,3 ]
Boutaleb, Youssef [3 ]
机构
[1] Univ Sfax, Res Grp Intelligent Machines, Sfax, Tunisia
[2] Univ Sfax, Data Engn & Semant Res Unit, Sfax, Tunisia
[3] Univ Sfax, Natl Engn Sch Sfax, BP 1173, Sfax 3038, Tunisia
[4] Higher Inst Comp Sci & Multimedia, BP 122, Gabes 6033, Tunisia
关键词
Blockchain; Security; Energy management; Time series; Machine learning; Anomaly detection; MECHANISM; PRIVACY;
D O I
10.1016/j.cie.2025.111040
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Effective energy management requires advanced strategies to optimize consumption, enhance reliability, and promote sustainability. This paper addresses secure and transparent energy management by integrating blockchain technology with machine learning for anomaly detection. We deploy a blockchain architecture to ensure tamper-proof, decentralized data sharing, allowing for anomaly alerts by postcode. This study evaluates four clustering algorithms K-Means, DBSCAN, MeanShift, and Isolation Forest-for detecting anomalies. Automated hyperparameter tuning was applied, and the methods were validated using the Ausgrid dataset, which contains detailed energy consumption records. To establish a robust anomaly detection framework, we employ well-known supervised classification algorithms - Decision Tree, KNN, Logistic Regression, Random Forest, and XGBoost - to evaluate the performance of each clustering method and conduct a comparative analysis to identify the most effective machine learning algorithm. A cross-validation process is undertaken to optimize hyperparameters for each classification method. To address the challenge of imbalanced datasets, we applied SMOTE (Synthetic Minority Over-sampling Technique), which generates synthetic samples for underrepresented classes. The performance of anomaly detection algorithms was compared with and without this technique. The proposed system's scalability, supported by energy-efficient consensus mechanisms such as Proof of Stake, ensures its applicability to large-scale energy management systems. These features demonstrate the framework's potential to enhance grid resilience and support dynamic, decentralized energy networks in real-world scenarios. Overall, our proposed architecture demonstrates significant results, confirming that the combination of blockchain technology and machine learning enhances the security, transparency, efficiency, and resilience of energy management systems.
引用
收藏
页数:28
相关论文
共 50 条
  • [31] IoT Anomaly Detection Using a Multitude of Machine Learning Algorithms
    Balega, Maria
    Farag, Waleed
    Ezekiel, Soundararajan
    Wu, Xin-Wen
    Deak, Alicia
    Good, Zaryn
    2022 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP, AIPR, 2022,
  • [32] Network Traffic Anomaly Detection using Machine Learning Approaches
    Limthong, Kriangkrai
    Tawsook, Thidarat
    2012 IEEE NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM (NOMS), 2012, : 542 - 545
  • [33] A Survey of BGP Anomaly Detection Using Machine Learning Techniques
    Hammood, Noor Hadi
    Al-Musawi, Bahaa
    Alhilali, Ahmed Hazim
    APPLICATIONS AND TECHNIQUES IN INFORMATION SECURITY (ATIS 2021), 2022, 1554 : 109 - 120
  • [34] Anomaly Detection for Strain of Slope Surface Using Machine Learning
    Nakane, Ryota
    Hiraoka, Nobutaka
    Kikkawa, Naotaka
    Hiranai, Kazuki
    Itoh, Kazuya
    NATURAL GEO-DISASTERS AND RESILIENCY, CREST 2023, 2024, 445 : 419 - 430
  • [35] Anomaly Detection in Industrial Networks using Machine Learning: A Roadmap
    Meshram, Ankush
    Haas, Christian
    MACHINE LEARNING FOR CYBER PHYSICAL SYSTEMS, 2017, 3 : 65 - 72
  • [36] Blockchain-Based Secure File Storage with Hybrid Cryptography and Machine Learning for Malware Detection
    Ali, Ahmed Mohammed
    Ghorpade, Vijay
    Pathak, Nitish
    Sharma, Neelam
    ADVANCES IN INFORMATION COMMUNICATION TECHNOLOGY AND COMPUTING, AICTC 2021, 2022, 392 : 235 - 243
  • [37] Anomaly detection using unsupervised machine learning algorithms: A simulation study
    Agyemang, Edmund Fosu
    SCIENTIFIC AFRICAN, 2024, 26
  • [38] A study on anomaly detection of unmanned marine systems using machine learning
    Jeong, Sang-Ki
    Ji, Dae-Hyeong
    Oh, Myounghak
    Park, Haeyong
    Baeg, Saehun
    Lee, Jihyoeng
    MEASUREMENT & CONTROL, 2023, 56 (3-4): : 470 - 480
  • [39] Anomaly detection for fault detection in wireless community networks using machine learning
    Cerda-Alabern, Llorenc
    Iuhasz, Gabriel
    Gemmi, Gabriele
    COMPUTER COMMUNICATIONS, 2023, 202 : 191 - 203
  • [40] Secure, Decentralized Energy Resource Management using the Ethereum Blockchain
    DeCusatis, Casimer
    Kulvinder, Lotay
    2018 17TH IEEE INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (IEEE TRUSTCOM) / 12TH IEEE INTERNATIONAL CONFERENCE ON BIG DATA SCIENCE AND ENGINEERING (IEEE BIGDATASE), 2018, : 1907 - 1913