A cooperative lateral and vertical control strategy for autonomous vehicles based on multi-agent deep reinforcement learning

被引:0
|
作者
Liu, Qianjie [1 ,2 ]
Xiong, Peixiang [1 ,2 ]
Zhu, Qingyuan [3 ]
Xiao, Wei [1 ,2 ]
Li, Gang [1 ,2 ]
Hu, Guoliang [1 ,2 ]
机构
[1] East China Jiaotong Univ, Sch Mechatron & Vehicle Engn, Nanchang 330013, Peoples R China
[2] East China Jiaotong Univ, Key Lab Vehicle Intelligent Equipment & Control Na, Nanchang, Peoples R China
[3] Xiamen Univ, Dept Mech & Elect Engn, Xiamen, Peoples R China
基金
中国国家自然科学基金;
关键词
Autonomous vehicle; reinforcement learning; path following; suspension control; ride comfort; ENVELOPES;
D O I
10.1177/09544070241309518
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
With the increasing level of automation in autonomous vehicles, consideration of comfort and stability will further enhance the public acceptance of autonomous driving technology. This paper presents a cooperative lateral and vertical control strategy for autonomous vehicles based on multi-agent deep reinforcement learning, which integrates path tracking and suspension control for different planar learning tasks. By developing the lateral and vertical dynamic models, the multi-objective coordinated exploration of path tracking and active suspension systems is imposed by using the deep deterministic policy gradient (DDPG) algorithm. In the multi-agent deep reinforcement learning, a feedforward steering of steering subsystem and a PID compensation control of suspension subsystem are added to the DDPG control process for efficiently searching the strategic action of the coupling system. Furthermore, the learning reward function of autonomous vehicle is designed by comprehensively considering the accuracy, safety and comfort performance. Through the trained learning process and simulation results under different driving conditions, the proposed method can achieve the simultaneous optimization of path tracking and suspension comfort performance, and effectively improve the ride comfort and stability in the high-performance path tracking process. This study provides an efficient control scheme for improving the ride comfort of autonomous vehicles.
引用
收藏
页数:16
相关论文
共 50 条
  • [11] Transform networks for cooperative multi-agent deep reinforcement learning
    Wang, Hongbin
    Xie, Xiaodong
    Zhou, Lianke
    APPLIED INTELLIGENCE, 2023, 53 (08) : 9261 - 9269
  • [12] Distributed Deep Multi-Agent Reinforcement Learning for Cooperative Edge Caching in Internet-of-Vehicles
    Zhou, Huan
    Jiang, Kai
    He, Shibo
    Min, Geyong
    Wu, Jie
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (12) : 9595 - 9609
  • [13] Transform networks for cooperative multi-agent deep reinforcement learning
    Hongbin Wang
    Xiaodong Xie
    Lianke Zhou
    Applied Intelligence, 2023, 53 : 9261 - 9269
  • [14] Multi-agent Cooperative Search based on Reinforcement Learning
    Sun, Yinjiang
    Zhang, Rui
    Liang, Wenbao
    Xu, Cheng
    PROCEEDINGS OF 2020 3RD INTERNATIONAL CONFERENCE ON UNMANNED SYSTEMS (ICUS), 2020, : 891 - 896
  • [15] Cooperative multi-agent game based on reinforcement learning
    Liu, Hongbo
    HIGH-CONFIDENCE COMPUTING, 2024, 4 (01):
  • [16] Multi-agent cooperative learning research based on reinforcement learning
    Liu, Fei
    Zeng, Guangzhou
    2006 10TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, PROCEEDINGS, VOLS 1 AND 2, 2006, : 1408 - 1413
  • [17] Multi-Agent Reinforcement Learning for Cooperative Adaptive Cruise Control
    Peake, Ashley
    McCalmon, Joe
    Raiford, Benjamin
    Liu, Tongtong
    Alqahtani, Sarra
    2020 IEEE 32ND INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2020, : 15 - 22
  • [18] Reinforcement Learning Approach for Cooperative Control of Multi-Agent Systems
    Javalera-Rincon, Valeria
    Puig Cayuela, Vicenc
    Morcego Seix, Bernardo
    Orduna-Cabrera, Fernando
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE (ICAART), VOL 2, 2019, : 80 - 91
  • [19] Edge server deployment strategy based on multi-agent reinforcement learning in the internet of vehicles
    Li, Chuang
    Ji, Jianqiao
    Hu, Zhigang
    Zhou, Zhou
    Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 2024, 55 (07): : 2567 - 2577
  • [20] Survey of Multi-Agent Strategy Based on Reinforcement Learning
    Chen, Liang
    Guo, Ting
    Liu, Yun-ting
    Yang, Jia-ming
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 604 - 609