Cross-Layer Feature Attention Module for Multi-scale Object Detection

被引:1
作者
Zheng, Haotian [1 ]
Pang, Cheng [1 ]
Lan, Rushi [1 ]
机构
[1] Guilin Univ Elect Technol, Sch Comp Sci & Informat Secur, Guilin, Peoples R China
来源
ARTIFICIAL INTELLIGENCE AND ROBOTICS, ISAIR 2022, PT II | 2022年 / 1701卷
基金
中国国家自然科学基金;
关键词
Attention; Feature fusion; Object detection;
D O I
10.1007/978-981-19-7943-9_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent target detection networks adopt the attention mechanism for better feature abstraction. However, most of them draw feature attentions from merely one or two layers, failing to obtain consistent results for objects with different scales. In this paper, we propose a cross-layer feature attention module (CFAM) which can be plugged in any off-the-shelf architecture, and demonstrate that attentions obtained from multiple layers can further improve object detection. The proposed module consists of two components for cross-layer feature fusion and feature refinement, respectively. The former collects rich contextual cues by fusing the features from distinct layers, while the later calculates the cross-layer attention maps and applies them with the fused features. Experiments show the proposed module improves the detection rate by 2% against the baseline architecture, and outperforms recent state-of-the-art methods on the Pascal VOC benchmark.
引用
收藏
页码:202 / 210
页数:9
相关论文
共 50 条
  • [31] FPDT: a multi-scale feature pyramidal object detection transformer
    Huang, Kailai
    Wen, Mi
    Wang, Chen
    Ling, Lina
    JOURNAL OF APPLIED REMOTE SENSING, 2023, 17 (02)
  • [32] CFFM: Multi-task lane object detection method based on cross-layer feature fusion
    Zhang, Yunzuo
    Zheng, Yuxin
    Tu, Zhiwei
    Wu, Cunyu
    Zhang, Tian
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 257
  • [33] Exploring Multi-scale Deep Feature Fusion for Object Detection
    Zhang, Quan
    Lai, Jianhuang
    Xie, Xiaohua
    Zhu, Junyong
    PATTERN RECOGNITION AND COMPUTER VISION (PRCV 2018), PT IV, 2018, 11259 : 40 - 52
  • [34] Multi-Scale Attention Deep Neural Network for Fast Accurate Object Detection
    Song, Kaiyou
    Yang, Hua
    Yin, Zhouping
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (10) : 2972 - 2985
  • [35] Substation rotational object detection based on multi-scale feature fusion and refinement
    Li, Bin
    Li, Yalin
    Zhu, Xinshan
    Qu, Luyao
    Wang, Shuai
    Tian, Yangyang
    Xu, Dan
    ENERGY AND AI, 2023, 14
  • [36] Cross-Layer Attention Network for Small Object Detection in Remote Sensing Imagery
    Li, Yangyang
    Huang, Qin
    Pei, Xuan
    Chen, Yanqiao
    Jiao, Licheng
    Shang, Ronghua
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 2148 - 2161
  • [37] Small object detection in remote sensing images based on attention mechanism and multi-scale feature fusion
    Zhang, Li-guo
    Wang, Lei
    Jin, Mei
    Geng, Xing-shuo
    Shen, Qian
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (09) : 3280 - 3297
  • [38] Multi-Scale Feature Similarity and Object Detection for Small Printing Defects Detection
    Lou, Haojie
    Zheng, Yuanlin
    Chen, Wenqian
    Liu, Haiwen
    IEEE ACCESS, 2024, 12 : 196403 - 196412
  • [39] Enhanced SSD with interactive multi-scale attention features for object detection
    Shuren Zhou
    Jia Qiu
    Multimedia Tools and Applications, 2021, 80 : 11539 - 11556
  • [40] Enhanced SSD with interactive multi-scale attention features for object detection
    Zhou, Shuren
    Qiu, Jia
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (08) : 11539 - 11556