Cross-Layer Feature Attention Module for Multi-scale Object Detection

被引:1
|
作者
Zheng, Haotian [1 ]
Pang, Cheng [1 ]
Lan, Rushi [1 ]
机构
[1] Guilin Univ Elect Technol, Sch Comp Sci & Informat Secur, Guilin, Peoples R China
基金
中国国家自然科学基金;
关键词
Attention; Feature fusion; Object detection;
D O I
10.1007/978-981-19-7943-9_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent target detection networks adopt the attention mechanism for better feature abstraction. However, most of them draw feature attentions from merely one or two layers, failing to obtain consistent results for objects with different scales. In this paper, we propose a cross-layer feature attention module (CFAM) which can be plugged in any off-the-shelf architecture, and demonstrate that attentions obtained from multiple layers can further improve object detection. The proposed module consists of two components for cross-layer feature fusion and feature refinement, respectively. The former collects rich contextual cues by fusing the features from distinct layers, while the later calculates the cross-layer attention maps and applies them with the fused features. Experiments show the proposed module improves the detection rate by 2% against the baseline architecture, and outperforms recent state-of-the-art methods on the Pascal VOC benchmark.
引用
收藏
页码:202 / 210
页数:9
相关论文
共 50 条
  • [31] CFANet: A Cross-layer Feature Aggregation Network for Camouflaged Object Detection
    Zhang, Qing
    Yan, Weiqi
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 2441 - 2446
  • [32] Learning Discriminated Features Based on Feature Pyramid Networks and Attention for Multi-scale Object Detection
    Lu, Yunhua
    Su, Minghui
    Wang, Yong
    Liu, Zhi
    Peng, Tao
    COGNITIVE COMPUTATION, 2023, 15 (02) : 486 - 495
  • [33] Remote Sensing Object Detection Method Based on Attention Mechanism and Multi-scale Feature Fusion
    Liu, Yang
    Xiao, Yewei
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 7155 - 7160
  • [34] Object Detection of Remote Sensing Image Based on Multi-Scale Feature Fusion and Attention Mechanism
    Du, Zuoqiang
    Liang, Yuan
    IEEE ACCESS, 2024, 12 : 8619 - 8632
  • [35] Learning Discriminated Features Based on Feature Pyramid Networks and Attention for Multi-scale Object Detection
    Yunhua Lu
    Minghui Su
    Yong Wang
    Zhi Liu
    Tao Peng
    Cognitive Computation, 2023, 15 : 486 - 495
  • [36] Salient object detection via multi-scale attention CNN
    Ji, Yuzhu
    Zhang, Haijun
    Wu, Q. M. Jonathan
    NEUROCOMPUTING, 2018, 322 : 130 - 140
  • [37] Multi-scale cortical keypoint representation for attention and object detection
    Rodrigues, J
    du Buf, H
    PATTERN RECOGNITION AND IMAGE ANALYSIS, PT 2, PROCEEDINGS, 2005, 3523 : 255 - 262
  • [38] Exploring Multi-scale Deep Feature Fusion for Object Detection
    Zhang, Quan
    Lai, Jianhuang
    Xie, Xiaohua
    Zhu, Junyong
    PATTERN RECOGNITION AND COMPUTER VISION (PRCV 2018), PT IV, 2018, 11259 : 40 - 52
  • [39] Multi-Scale Feature Enhancement for Saliency Object Detection Algorithm
    Li, Su
    Wang, Rugang
    Zhou, Feng
    Wang, Yuanyuan
    Guo, Naihong
    IEEE ACCESS, 2023, 11 : 103511 - 103520
  • [40] Multi-Scale Feature Enhancement Method for Underwater Object Detection
    Li, Mengpan
    Liu, Wenhao
    Shao, Changbin
    Qin, Bin
    Tian, Ali
    Yu, Hualong
    SYMMETRY-BASEL, 2025, 17 (01):