BoostSF-SHAP: Gradient boosting-based software for protein-ligand binding affinity prediction with explanations

被引:0
作者
Chen, Xingqian [1 ]
Song, Shuangbao [2 ]
Song, Zhenyu [3 ]
Song, Shuangyu [1 ]
Ji, Junkai [4 ]
机构
[1] Jiangsu Univ Technol, Sch Comp Engn, Changzhou 213001, Peoples R China
[2] Changzhou Univ, Sch Comp Sci & Artificial Intelligence, Changzhou 213164, Peoples R China
[3] Taizhou Univ, Coll Informat Engn, Taizhou 225300, Peoples R China
[4] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Binding affinity prediction; Scoring function; Gradient boosting decision tree; SHAP; Explainable artificial intelligence; SCORING FUNCTIONS; DOCKING;
D O I
10.1016/j.neucom.2024.129303
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Machine learning-based (ML-based) scoring functions (SFs) for protein-ligand binding affinity prediction have exhibited remarkable performance in the field of structure-based drug discovery. However, little attention has been given to the interpretability of these SFs. In this study, we propose a software called BoostSF-SHAP for protein-ligand binding affinity prediction. Specifically, we employed gradient boosting decision trees (GBDTs) to construct the ML-based SF. Forty-one intermolecular interaction features were used as the input of this SF. Notably, the proposed software can provide local and global explanations for the SF by using the SHapley Additive exPlanations (SHAP) approach. This paper presents a description of the architecture, functionalities, and implementation details of the proposed software. An assessment and illustrative examples of how to use this software are also provided. BoostSF-SHAP is written in Python and available on GitHub under the Apache License.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Dowker complex based machine learning (DCML) models for protein-ligand binding affinity prediction
    Liu, Xiang
    Feng, Huitao
    Wu, Jie
    Xia, Kelin
    PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (04)
  • [22] Improved Protein-Ligand Binding Affinity Prediction with Structure-Based Deep Fusion Inference
    Jones, Derek
    Kim, Hyojin
    Zhang, Xiaohua
    Zemla, Adam
    Stevenson, Garrett
    Bennett, W. F. Drew
    Kirshner, Daniel
    Wong, Sergio E.
    Lightstone, Felice C.
    Allen, Jonathan E.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (04) : 1583 - 1592
  • [23] DLSSAffinity: protein-ligand binding affinity prediction via a deep learning model
    Wang, Huiwen
    Liu, Haoquan
    Ning, Shangbo
    Zeng, Chengwei
    Zhao, Yunjie
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (17) : 10124 - 10133
  • [24] Structure-aware Interactive Graph Neural Networks for the Prediction of Protein-Ligand Binding Affinity
    Li, Shuangli
    Zhou, Jingbo
    Xu, Tong
    Huang, Liang
    Wang, Fan
    Xiong, Haoyi
    Huang, Weili
    Dou, Dejing
    Xiong, Hui
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 975 - 985
  • [25] Exploring protein-ligand binding affinity prediction with electron density-based geometric deep learning
    Isert, Clemens
    Atz, Kenneth
    Riniker, Sereina
    Schneider, Gisbert
    RSC ADVANCES, 2024, 14 (07) : 4492 - 4502
  • [26] A machine learning approach towards the prediction of protein-ligand binding affinity based on fundamental molecular properties
    Kundu, Indra
    Paul, Goutam
    Banerjee, Raja
    RSC ADVANCES, 2018, 8 (22) : 12127 - 12137
  • [27] Persistent Directed Flag Laplacian (PDFL)-Based Machine Learning for Protein-Ligand Binding Affinity Prediction
    Zia, Mushal
    Jones, Benjamin
    Feng, Hongsong
    Wei, Guo-Wei
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2025,
  • [28] The Importance of the Regression Model in the Structure-Based Prediction of Protein-Ligand Binding
    Li, Hongjian
    Leung, Kwong-Sak
    Wong, Man-Hon
    Ballester, Pedro J.
    COMPUTATIONAL INTELLIGENCE METHODS FOR BIOINFORMATICS AND BIOSTATISTICS, CIBB 2014, 2015, 8623 : 219 - 230
  • [29] Water Network-Augmented Two-State Model for Protein-Ligand Binding Affinity Prediction
    Qu, Xiaoyang
    Dong, Lina
    Luo, Ding
    Si, Yubing
    Wang, Binju
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 64 (07) : 2263 - 2274
  • [30] Effects of data quality and quantity on deep learning for protein-ligand binding affinity prediction
    Fan, Frankie J.
    Shi, Yun
    BIOORGANIC & MEDICINAL CHEMISTRY, 2022, 72