Scalable sparse bipartite graph factorization for multi-view clustering

被引:0
作者
Wu, Jinghan
Yang, Ben
Yang, Shangzong
Zhang, Xuetao [1 ]
Chen, Badong
机构
[1] Xi An Jiao Tong Univ, Inst Artificial Intelligence & Robot, Xian 710049, Shaanxi, Peoples R China
关键词
Bipartite graph; Matrix factorization; Multi-view clustering; Sparse learning; CLASSIFICATION;
D O I
10.1016/j.eswa.2024.126192
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-view bipartite graph clustering (MBGC) has become an impressive branch of multi-view clustering (MVC) due to its remarkable scalability. Despite that various MBGC methods have been proposed, there are still some remaining issues. On the one hand, most of them need the singular value decomposition (SVD) of bipartite graphs to obtain spectral embedding, which may hampers efficiency when requiring a large number of anchors. On the other hand, the traditional sparsity-inducing norms like L 1 norm used inmost methods fail to provide sufficient sparsity for embedding, which may impair effectiveness especially when facing noise and corruption. To this end, this paper proposes a scalable sparse bipartite graph factorization method for multi-view clustering (S2BGFMC). Specifically, to get rid of complex spectral analysis, the concept of bipartite graph factorization is proposed. In this concept, amore efficient partition technique, non-negative matrix factorization (NMF) is directly performed on bipartite graphs to maintain the efficiency of the whole clustering process. Additionally, L 2 ,log-(pseudo) norm, a column-wisely sparse, is constrained on the embeddings to bring the desired sparsity, thereby improving the effectiveness. To solve the proposed model, an efficient alternating iterative updating method is proposed. Extensive experiments illustrate that S2BGFMC can achieve superior efficiency and effectiveness against other baselines.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Multi-View Matrix Factorization for Sparse Mobile Crowdsensing
    Li, Xiaocan
    Xie, Kun
    Xie, Gaogang
    Li, Kenli
    Cao, Jiannong
    Zhang, Dafang
    Wen, Jigang
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (24) : 25767 - 25779
  • [42] Robust Dual-Graph Regularized Deep Matrix Factorization for Multi-view Clustering
    Shu, Zhenqiu
    Li, Bin
    Hu, Cong
    Yu, Zhengtao
    Wu, Xiao-Jun
    NEURAL PROCESSING LETTERS, 2023, 55 (05) : 6067 - 6087
  • [43] Robust Dual-Graph Regularized Deep Matrix Factorization for Multi-view Clustering
    Zhenqiu Shu
    Bin Li
    Cong Hu
    Zhengtao Yu
    Xiao-Jun Wu
    Neural Processing Letters, 2023, 55 : 6067 - 6087
  • [44] Localized Sparse Incomplete Multi-View Clustering
    Liu, Chengliang
    Wu, Zhihao
    Wen, Jie
    Xu, Yong
    Huang, Chao
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 5539 - 5551
  • [45] Deep Multi-view Sparse Subspace Clustering
    Tang, Xiaoliang
    Tang, Xuan
    Wang, Wanli
    Fang, Li
    Wei, Xian
    PROCEEDINGS OF 2018 VII INTERNATIONAL CONFERENCE ON NETWORK, COMMUNICATION AND COMPUTING (ICNCC 2018), 2018, : 115 - 119
  • [46] Anchor-based scalable multi-view subspace clustering
    Zhou, Shibing
    Yang, Mingrui
    Wang, Xi
    Song, Wei
    INFORMATION SCIENCES, 2024, 666
  • [47] Constrained bilinear factorization multi-view subspace clustering
    Zheng, Qinghai
    Zhu, Jihua
    Tian, Zhiqiang
    Li, Zhongyu
    Pang, Shanmin
    Jia, Xiuyi
    KNOWLEDGE-BASED SYSTEMS, 2020, 194
  • [48] Multi-view clustering via deep concept factorization
    Chang, Shuai
    Hu, Jie
    Li, Tianrui
    Wang, Hao
    Peng, Bo
    KNOWLEDGE-BASED SYSTEMS, 2021, 217
  • [49] Deep graph reconstruction for multi-view clustering
    Zhao, Mingyu
    Yang, Weidong
    Nie, Feiping
    NEURAL NETWORKS, 2023, 168 : 560 - 568
  • [50] Essential multi-view graph learning for clustering
    Shuangxun Ma
    Qinghai Zheng
    Yuehu Liu
    Journal of Ambient Intelligence and Humanized Computing, 2022, 13 : 5225 - 5236