Scalable sparse bipartite graph factorization for multi-view clustering

被引:0
作者
Wu, Jinghan
Yang, Ben
Yang, Shangzong
Zhang, Xuetao [1 ]
Chen, Badong
机构
[1] Xi An Jiao Tong Univ, Inst Artificial Intelligence & Robot, Xian 710049, Shaanxi, Peoples R China
关键词
Bipartite graph; Matrix factorization; Multi-view clustering; Sparse learning; CLASSIFICATION;
D O I
10.1016/j.eswa.2024.126192
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-view bipartite graph clustering (MBGC) has become an impressive branch of multi-view clustering (MVC) due to its remarkable scalability. Despite that various MBGC methods have been proposed, there are still some remaining issues. On the one hand, most of them need the singular value decomposition (SVD) of bipartite graphs to obtain spectral embedding, which may hampers efficiency when requiring a large number of anchors. On the other hand, the traditional sparsity-inducing norms like L 1 norm used inmost methods fail to provide sufficient sparsity for embedding, which may impair effectiveness especially when facing noise and corruption. To this end, this paper proposes a scalable sparse bipartite graph factorization method for multi-view clustering (S2BGFMC). Specifically, to get rid of complex spectral analysis, the concept of bipartite graph factorization is proposed. In this concept, amore efficient partition technique, non-negative matrix factorization (NMF) is directly performed on bipartite graphs to maintain the efficiency of the whole clustering process. Additionally, L 2 ,log-(pseudo) norm, a column-wisely sparse, is constrained on the embeddings to bring the desired sparsity, thereby improving the effectiveness. To solve the proposed model, an efficient alternating iterative updating method is proposed. Extensive experiments illustrate that S2BGFMC can achieve superior efficiency and effectiveness against other baselines.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Scalable and parameter-free fusion graph learning for multi-view clustering
    Duan, Yu
    Wu, Danyang
    Wang, Rong
    Li, Xuelong
    Nie, Feiping
    NEUROCOMPUTING, 2024, 597
  • [22] Multi-Graph Constraint Matrix Factorization for Multi-view Image Clustering
    Li, Guopeng
    Geng, Junfeng
    Liu, Jing
    Han, Kun
    2020 INTERNATIONAL CONFERENCE ON BIG DATA & ARTIFICIAL INTELLIGENCE & SOFTWARE ENGINEERING (ICBASE 2020), 2020, : 415 - 418
  • [23] Incomplete Multi-view Clustering via Graph Regularized Matrix Factorization
    Wen, Jie
    Zhang, Zheng
    Xu, Yong
    Zhong, Zuofeng
    COMPUTER VISION - ECCV 2018 WORKSHOPS, PT IV, 2019, 11132 : 593 - 608
  • [24] Fast Multi-View Clustering via Nonnegative and Orthogonal Factorization
    Yang, Ben
    Zhang, Xuetao
    Nie, Feiping
    Wang, Fei
    Yu, Weizhong
    Wang, Rong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 2575 - 2586
  • [25] Dual-graph regularized concept factorization for multi-view clustering
    Mu, Jinshuai
    Song, Peng
    Liu, Xiangyu
    Li, Shaokai
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 223
  • [26] Large-scale multi-view clustering via matrix factorization of consensus graph
    Yang, Zengbiao
    Tan, Yihua
    Yang, Tao
    PATTERN RECOGNITION, 2024, 155
  • [27] Efficient Multi-View Clustering via Unified and Discrete Bipartite Graph Learning
    Fang, Si-Guo
    Huang, Dong
    Cai, Xiao-Sha
    Wang, Chang-Dong
    He, Chaobo
    Tang, Yong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (08) : 11436 - 11447
  • [28] Bipartite Graph-based Discriminative Feature Learning for Multi-View Clustering
    Yan, Weiqing
    Xu, Jindong
    Liu, Jinglei
    Yue, Guanghui
    Tang, Chang
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 3403 - 3411
  • [29] Multi-view clustering via high-order bipartite graph fusion
    Zhao, Zihua
    Wang, Ting
    Xin, Haonan
    Wang, Rong
    Nie, Feiping
    INFORMATION FUSION, 2025, 113
  • [30] Auto-weighted multi-view clustering via hierarchical bipartite graph
    Zhou, Jie
    Luo, Xinglong
    Nie, Feiping
    He, Xingshi
    NEUROCOMPUTING, 2024, 605