Characterizing ZnMgO/Sb2Se3 Interface for Solar Cell Applications

被引:0
作者
Je, Yonghun [1 ]
Jeon, Jaeeun [2 ]
Tampo, Hitoshi [2 ]
Nagai, Takehiko [2 ]
Kim, Shinho [1 ]
Kim, Yangdo [1 ]
机构
[1] Pusan Natl Univ, Sch Mat Sci & Engn, Busan 46241, South Korea
[2] Natl Inst Adv Ind Sci & Technol, Res Inst Energy Conservat, Tsukuba, Ibaraki 3058568, Japan
来源
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS | 2025年 / 19卷 / 02期
关键词
conduction band offset; interface; Sb2Se3; thin film solar cells; ZnMgO; BAND ALIGNMENT; PERFORMANCE; EFFICIENCY; ZN1-XMGXO; BUFFER; LAYER;
D O I
10.1002/pssr.202400267
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study investigates the band alignment of the Zn0.8Mg0.2O/Sb2Se3 interface structure to improve solar cell performance. Sb2Se3 is a promising absorber material. However, Sb2Se3 solar cells exhibit a lower conversion efficiency than CuInGaSe2 and CdTe solar cells. The lower efficiency of Sb2Se3 solar cells is attributed to the severe open-circuit voltage loss caused by the band structure at the buffer/Sb2Se3 interface. Sb2Se3 solar cells typically employ CdS as the buffer layer, and the CdS/Sb2Se3 interface exhibits a cliff structure, which results in interfacial recombination. By contrast, a ZnMgO buffer layer can form a spike structure with Sb2Se3 at their interface, which reduces recombination and, as a result, enhances conversion efficiency. Therefore, this study employs the ZnMgO buffer layer and analyzes their material properties with various Mg contents and band structure at buffer/absorber layer interface. A ZnMgO buffer layer is sputter-deposited on Sb2Se3. The optical bandgap of ZnMgO is 3.3-3.72 eV, corresponding to an Mg content of 0-0.35 at%. The carrier concentration indicates an appropriate doping level ranging from 10(14) to 10(16 )cm(-3). The Zn0.8Mg0.2O/Sb2Se3 interface is characterized via interface-induced band bending. The Zn0.8Mg0.2O/Sb2Se3 interface exhibits a spike structure with a positive delta conduction band offset of +0.193 eV.
引用
收藏
页数:6
相关论文
共 34 条
[1]   physical properties of CdS / CdTe / CIGS thin films for solar cell application [J].
Ahmed, B. A. ;
Shallal, I. H. ;
Al-Attar, F. I. Mustafa .
SIXTH SCIENTIFIC CONFERENCE RENEWABLE ENERGY AND ITS APPLICATIONS, 2018, 1032
[2]   Accelerated Optimization of TiO2/Sb2Se3 Thin Film Solar Cells by High-Throughput Combinatorial Approach [J].
Chen, Chao ;
Zhao, Yang ;
Lu, Shuaicheng ;
Li, Kanghua ;
Li, Yang ;
Yang, Bo ;
Chen, Wenhao ;
Wang, Liang ;
Li, Dengbing ;
Deng, Hui ;
Yi, Fei ;
Tang, Jiang .
ADVANCED ENERGY MATERIALS, 2017, 7 (20)
[3]  
Chen S., 2024, ADV FUNCT MATER, V34, P2403934
[4]   One-dimensional modeling for an investigation into parameter optimization, crossover and red-kink behavior of ZnMgO buffer layer Cd-free Cu(In,Ga)Se2 solar cell [J].
Dinakaran, S. ;
Meher, S. R. ;
Swarnavalli, G. Cynthia Jemima .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2019, 125 (06)
[5]   Boosting VOC of antimony chalcogenide solar cells: A review on interfaces and defects [J].
Dong, Jiabin ;
Liu, Yue ;
Wang, Zuoyun ;
Zhang, Yi .
NANO SELECT, 2021, 2 (10) :1818-1848
[6]   Sb2Se3 Thin-Film Solar Cells Exceeding 10% Power Conversion Efficiency Enabled by Injection Vapor Deposition Technology [J].
Duan, Zhaoteng ;
Liang, Xiaoyang ;
Feng, Yang ;
Ma, Haiya ;
Liang, Baolai ;
Wang, Ying ;
Luo, Shiping ;
Wang, Shufang ;
Schropp, Ruud E. I. ;
Mai, Yaohua ;
Li, Zhiqiang .
ADVANCED MATERIALS, 2022, 34 (30)
[7]  
Gao S., 2018, CHINESE PHYS B, P27
[8]   Towards high efficiency Cd-Free Sb2Se3 solar cells by the band alignment optimization [J].
Gharibshahian, Iman ;
Orouji, Ali A. ;
Sharbati, Samaneh .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2020, 212
[9]   The Band Structures of Zn1-xMgxO(In) and the Simulation of CdTe Solar Cells with a Zn1-xMgxO(In) Window Layer by SCAPS [J].
He, Xu ;
Wu, Lili ;
Hao, Xia ;
Zhang, Jingquan ;
Li, Chunxiu ;
Wang, Wenwu ;
Feng, Lianghuan ;
Du, Zheng .
ENERGIES, 2019, 12 (02)
[10]   CZTS-based materials and interfaces and their effects on the performance of thin film solar cells [J].
Huang, Tang Jiao ;
Yin, Xuesong ;
Qi, Guojun ;
Gong, Hao .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2014, 8 (09) :735-762