SMN-YOLO: Lightweight YOLOv8-Based Model for Small Object Detection in Remote Sensing Images

被引:1
|
作者
Zheng, Xiangyue [1 ,2 ,3 ]
Bi, Jingxin [1 ,2 ,3 ]
Li, Keda [1 ,2 ,3 ]
Zhang, Gang [1 ,2 ,3 ]
Jiang, Ping [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Opt & Elect, Chengdu 610209, Peoples R China
[2] Natl Lab Adapt Opt, Chengdu 610209, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 101408, Peoples R China
关键词
Object detection; Remote sensing; Feature extraction; Computational modeling; Accuracy; Training; Attention mechanisms; Standards; Spatial resolution; Semantics; Multiscale feature attention module (MSFAM); remote sensing; small object detection; spatial-channel decoupled downsampling (SCDown);
D O I
10.1109/LGRS.2025.3546034
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The remote sensing image object detection has advanced significantly; yet, small object detection remains challenging due to their limited size and varying scales. Furthermore, real-world deployment often requires algorithms optimized for fewer parameters and faster inference. To address these issues, we propose SMN-YOLO, a lightweight small object detector based on YOLOv8n. Our approach introduces spatial-channel decoupling downsampling to reduce model size while retaining crucial downsampling information. We also present lightweight and efficient feature pyramid network (LEFPN), a lightweight multiscale feature fusion network incorporating coordinate attention (CA) to capture spatial location cues, enhancing small object detection. In addition, a multiscale feature attention module (MSFAM) further strengthens feature representation. To improve accuracy, we integrate new complete intersection over union (N-CIoU) bounding box regression loss, which minimizes the impact of positional changes on IoU, helping the model focus on low-IoU objects. Experimental results on the vehicle detection in aerial imagery (VEDAI) and AI-based tiny object detection (AI-TOD) datasets show that SMN-YOLO outperforms baseline models with a 3.2% and 2.9% improvement in mean average precision (mAP) at 0.5, respectively, while significantly reducing parameters and only slightly increasing inference time. The proposed model achieves a strong balance between performance and complexity, surpassing several leading detection models.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] LTEA-YOLO: An Improved YOLOv5s Model for Small Object Detection
    Li, Bo
    Huang, Shengbao
    Zhong, Guangjin
    IEEE ACCESS, 2024, 12 : 99768 - 99778
  • [22] Remote Sensing Small Object Detection Based on Multicontextual Information Aggregation
    Wang, Jingyu
    Ma, Mingrui
    Huang, Pengfei
    Mei, Shaohui
    Zhang, Liang
    Wang, Hongmei
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 8248 - 8260
  • [23] Dynamic Sensing and Correlation Loss Detector for Small Object Detection in Remote Sensing Images
    Shen, Chongchong
    Qian, Jiangbo
    Wang, Chong
    Yan, Diqun
    Zhong, Caiming
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 12
  • [24] Swin-Transformer-Based YOLOv5 for Small-Object Detection in Remote Sensing Images
    Cao, Xuan
    Zhang, Yanwei
    Lang, Song
    Gong, Yan
    SENSORS, 2023, 23 (07)
  • [25] LSOD-YOLOv8s: A Lightweight Small Object Detection Model Based on YOLOv8 for UAV Aerial Images
    Li, Huikai
    Wu, Jie
    ENGINEERING LETTERS, 2024, 32 (11) : 2073 - 2082
  • [26] Research on object detection and recognition in remote sensing images based on YOLOv11
    Lu-hao He
    Yong-zhang Zhou
    Lei Liu
    Wei Cao
    Jian-hua Ma
    Scientific Reports, 15 (1)
  • [27] Object Detection Algorithm of Optical Remote Sensing Images Based on YOLOv3
    Wang Peng
    Xin Xuejing
    Wang Liqin
    Liu Rui
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (20)
  • [28] DS-YOLOv8-Based Object Detection Method for Remote Sensing Images
    Shen, Lingyun
    Lang, Baihe
    Song, Zhengxun
    IEEE ACCESS, 2023, 11 : 125122 - 125137
  • [29] LO-Det: Lightweight Oriented Object Detection in Remote Sensing Images
    Huang, Zhanchao
    Li, Wei
    Xia, Xiang-Gen
    Wang, Hao
    Jie, Feiran
    Tao, Ran
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [30] A Tiny Object Detection Method Based on Explicit Semantic Guidance for Remote Sensing Images
    Liu, Dongyang
    Zhang, Junping
    Qi, Yunxiao
    Wu, Yinhu
    Zhang, Ye
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5