A Correlative In Situ and Ex Situ Analysis of Static Recrystallisation in a New Superalloy for 3D-Printing

被引:0
|
作者
Tang, Yuanbo T. [1 ]
Pham, Anh Hoang [3 ,4 ]
Utada, Satoshi [2 ]
Zhang, Jieming S. [2 ]
Zhuge, Yuhan [2 ]
Morito, Shigekazu [3 ,4 ]
Arakawa, Kazuto [3 ,4 ]
McCartney, D. Graham [2 ,4 ]
Reed, Roger C. [2 ,4 ]
机构
[1] Univ Birmingham, Sch Met & Mat, Elms Rd, Birmingham B15 2SE, W Midlands, England
[2] Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England
[3] Shimane Univ, Fac Mat Energy, Matsue, Shimane 6908504, Japan
[4] Shimane Univ, Next Generat Tatara Co Creat Ctr NEXTA, Matsue, Shimane 6908504, Japan
来源
SUPERALLOYS 2024, ISS 2024 | 2024年
关键词
Recrystallisation; Confocal laser scanning microscope; L-PBF; Superalloys; AM; In situ characterisation; LASER; ALLOYS; MICROSTRUCTURE; DESIGN; STEELS;
D O I
10.1007/978-3-031-63937-1_78
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
By making particular use of high-temperature confocal laser scanning microscopy, static recrystallisation is studied correlatively both in situ and ex situ in an as-fabricated superalloy made by laser-powder bed fusion (L-PBF). In this way, insights are gained into important recrystallisation phenomena with direct observations made-for the first time in this class of material-of phenomena such as nucleation of recrystallisation, subsequent grain growth, jerky flow of boundaries due to pinning, and twin formation. The nucleation process-requiring strain-free lattice to be created by grain boundary migration-is visualised, and its role in limiting the kinetics of recrystallisation is elucidated. Moreover, it is demonstrated that boundary mobility is initially prevented by Smith-Zener pinning due to a fine dispersion of secondary phases but also with a role played by solute drag caused by cellular micro-segregation. With increasing annealing time, the retarding pressure reduces due to carbide coarsening and/or dissolution as well as matrix compositional homogenisation, eventually allowing recrystallisation to take place. Further work will allow rich quantitative datasets to be gained which will allow for the testing of recrystallisation models.
引用
收藏
页码:836 / 848
页数:13
相关论文
共 28 条
  • [1] 3D-printing analysis of surface finish
    Morampudi, Priyadarsini
    Ramana, V. S. N. Venkata
    Prabha, K. Aruna
    Swetha, S.
    Rao, A. N. Brahmeswara
    MATERIALS TODAY-PROCEEDINGS, 2021, 43 : 587 - 592
  • [2] A new class of alumina-forming superalloy for 3D printing
    Ghoussoub, Joseph N.
    Klups, Przemyslaw
    Dick-Cleland, William J. B.
    Rankin, Kathryn E.
    Utada, Satoshi
    Bagot, Paul A. J.
    McCartney, D. Graham
    Tang, Yuanbo T.
    Reed, Roger C.
    ADDITIVE MANUFACTURING, 2022, 52
  • [3] IN SITU NANO 3D PRINTING OF A MICROFLUIDIC DIODE
    Lamont, Andrew C.
    Reggia, Ethan C.
    Sochol, Ryan D.
    30TH IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (MEMS 2017), 2017, : 1304 - 1307
  • [4] In Situ 3D Printing: Opportunities with Silk Inks
    Agostinacchio, Francesca
    Mu, Xuan
    Dire, Sandra
    Motta, Antonella
    Kaplan, David L.
    TRENDS IN BIOTECHNOLOGY, 2021, 39 (07) : 719 - 730
  • [5] 3D-printing porosity: A new approach to creating elevated porosity materials and structures
    Jakus, A. E.
    Geisendorfer, N. R.
    Lewis, P. L.
    Shah, R. N.
    ACTA BIOMATERIALIA, 2018, 72 : 94 - 109
  • [6] Preparation and Characteristics of Porous Mullite Ceramics by 3D Printing and In-Situ Synthesis
    Wu, Rina
    Wang, Chaochao
    Xu, Guodong
    Fan, Meiling
    Huang, Zhigang
    Zeng, Tao
    Wang, Xiaohong
    MATERIALS, 2025, 18 (05)
  • [7] Extrusion-based 3D printing of ex situ -alloyed highly biodegradable MRI-friendly porous iron-manganese scaffolds
    Putra, N. E.
    Leeflang, M. A.
    Taheri, P.
    Fratila-Apachitei, L. E.
    Mol, J. M. C.
    Zhou, J.
    Zadpoor, A. A.
    ACTA BIOMATERIALIA, 2021, 134 : 774 - 790
  • [8] 3D printing of Al matrix composites through in situ impregnation of carbon nanotubes on Al powder
    Geng, Kang
    Li, Shaofu
    Yang, Y. F.
    Misra, R. D. K.
    CARBON, 2020, 162 (162) : 465 - 474
  • [9] In situ formation of metal matrix composites using binder jet additive manufacturing (3D printing)
    Enrique, Pablo D.
    Mahmoodkhani, Yahya
    Marzbanrad, Ehsan
    Toyserkani, Ehsan
    Zhou, Norman Y.
    MATERIALS LETTERS, 2018, 232 : 179 - 182
  • [10] In Situ Crosslinkable Collagen-Based Hydrogels for 3D Printing of Dermis-Mimetic Constructs
    Kang, Moon Sung
    Kwon, Mina
    Lee, So Yun
    Lee, Seok Hyun
    Jo, Hyo Jung
    Kim, Bongju
    Kim, Ki Su
    Han, Dong-Wook
    ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2022, 11 (04)