Harmonic analysis associated with the linear canonical Fourier-Jacobi transform

被引:0
作者
Dahani, A. [1 ]
Elgadiri, F. [1 ]
Akhlidj, A. [1 ]
机构
[1] Univ Hassan 2, Fac Sci Ain Chock, Dept Math, Casablanca, Morocco
关键词
Fourier-Jacobi transform; linear canonical transform; inversion formula; Plancherel theorem; Paley-Wiener theorem; Riemann-Lebsgue lemma; APPROXIMATION;
D O I
10.1080/10652469.2024.2426183
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main objective of this paper is to develop a new harmonic analysis related to a Fourier-Jacobi type operator $ \Delta _{\alpha,\beta }<^>m $ Delta alpha,beta m of the real line. We define and study the linear canonical Fourier-Jacobi transform $ \mathcal {F}_{\alpha,\beta }<^>m $ F alpha,beta m. We study some important properties, inversion formula, Plancherel theorem, Paley-Wiener theorem and Riemann-Lebsgue lemma. An application in solving a generalized heat equation is given.
引用
收藏
页数:22
相关论文
共 19 条
  • [1] Generalized translation and convolution associated to the linear canonical Fourier-Jacobi transform
    Akhlidj, Abdellatif
    Elgadiri, Fatima
    Dahani, Afaf
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2023, 34 (11) : 799 - 812
  • [2] Andersen NB., 2003, Hiroshima Math J, V33, P229, DOI [10.32917/hmj/1150997948, DOI 10.32917/HMJ/1150997948]
  • [3] Optimal filtering with linear canonical transformations
    Barshan, B
    Kutay, MA
    Ozaktas, HM
    [J]. OPTICS COMMUNICATIONS, 1997, 135 (1-3) : 32 - 36
  • [4] Chaudhary MS, 1996, INDIAN J PURE AP MAT, V27, P157
  • [5] Deeba EY., 1985, Int J Math Math Sci, V8, P345, DOI [10.1155/ijmm.v8.2, DOI 10.1155/IJMM.V8.2]
  • [6] Harmonic analysis associated to the canonical Fourier Bessel transform
    Dhaouadi, Lazhar
    Sahbani, Jihed
    Fitouhi, Ahmed
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2021, 32 (04) : 290 - 315
  • [7] PALEY-WIENER TYPE THEOREMS FOR A DIFFERENTIAL OPERATOR CONNECTED WITH SYMMETRIC SPACES
    FLENSTEDJENSEN, M
    [J]. ARKIV FOR MATEMATIK, 1972, 10 (01): : 143 - +
  • [8] CONVOLUTION STRUCTURE FOR JACOBI FUNCTION EXPANSIONS
    FLENSTEDJENSEN, M
    KOORNWINDER, T
    [J]. ARKIV FOR MATEMATIK, 1973, 11 (02): : 245 - 262
  • [9] Kawazoe T., 2008, Tokyo J Math, V31, P127, DOI [10.3836/tjm/1219844827, DOI 10.3836/TJM/1219844827]
  • [10] NEW PROOF OF A PALEY-WIENER TYPE THEOREM FOR JACOBI TRANSFORM
    KOORNWINDER, T
    [J]. ARKIV FOR MATEMATIK, 1975, 13 (01): : 145 - 159