Crystallization Thermodynamics Regulation of 1.85 eV Wide-Bandgap Perovskite for Efficient and Stable Perovskite-Organic Tandem Photovoltaics

被引:0
|
作者
Xie, Guanshui [1 ]
Li, Huan [1 ]
Fang, Jun [1 ]
Wang, Xin [1 ]
Peng, Haichen [1 ]
Lin, Dongxu [1 ]
Huang, Nuanshan [1 ]
Gan, Lin [1 ]
Li, Wenjia [1 ]
Jiang, Ruixuan [3 ]
Bu, Tongle [3 ]
Huang, Fuzhi [3 ]
He, Sisi [2 ]
Qiu, Longbin [1 ]
机构
[1] Southern Univ Sci & Technol, SUSTech Energy Inst Carbon Neutral, Dept Mech & Energy Engn, Shenzhen 518055, Peoples R China
[2] Univ Town, Harbin Inst Technol Shenzhen, Sch Sci, Shenzhen Key Lab Flexible Printed Elect Technol, Shenzhen 518055, Guangdong, Peoples R China
[3] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, P, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
Wide-band gap perovskite; Low-dimensional intermediate phase; Suppressed phase segregation; Reduced voltage loss; Perovskite-organic tandem solar cells; HALIDE PEROVSKITES; SOLAR; PHASE;
D O I
10.1002/anie.202501764
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Wide-band gap perovskite with adjustable band gaps can be integrated with organic solar cells to form tandem solar cells (TSCs), thereby surpassing the Shockley-Queisser limit. However, increasing Br content to elevate the band gap above 1.8 eV complicates crystallization, leading to inferior film quality and defects due to the unmanageable evolution of intermediate phases. Surface passivation improves crystallization but hard to moderate the inhomogeneous component distributions and defects in the bulk phase. Here, we introduce a diammonium salt as an additive to regulate the homogeneity and crystallization of perovskite film, eliminating the low-dimensional intermediate phase for orientated crystallization of 1.85 eV perovskite, resulting in efficient wide-band gap perovskite solar cells with an impressive open-circuit voltage (Voc) of 1.379 V and operational stability remaining 85 % of their initial efficiency after illumination for 1200 h. Furthermore, perovskite-organic TSCs achieve a champion power conversion efficiency of 24.03 % and a high Voc of 2.108 V, one of the highest Voc for perovskite-organic TSCs.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Wide-Bandgap Organic-Inorganic Lead Halide Perovskite Solar Cells
    Tong, Yao
    Najar, Adel
    Wang, Le
    Liu, Lu
    Du, Minyong
    Yang, Jing
    Li, Jianxun
    Wang, Kai
    Liu, Shengzhong
    ADVANCED SCIENCE, 2022, 9 (14)
  • [22] Efficient and Stable Wide-Bandgap Perovskite Solar Cells Derived from a Thermodynamic Phase-Pure Intermediate
    Yu, Fan
    Liu, Jian
    Huang, Jiahao
    Xu, Pan
    Li, Cheng-Hui
    Zheng, You-Xuan
    Tan, Hairen
    Zuo, Jing-Lin
    SOLAR RRL, 2022, 6 (02)
  • [23] Activating Halogen Circulation Enables Efficient and Stable Wide-Bandgap Mixed-Halide Perovskite Solar Cells
    Yang, Yang
    Chang, Qing
    Su, Jie
    Chao, Linfeng
    Wang, Yonglei
    Dai, Zhiyuan
    Huang, Xiaofeng
    Nie, Siqing
    Guo, Pengfei
    Yin, Jun
    Liu, Zhe
    Lin, Yen-Hung
    Jen, Alex K. -Y.
    Chen, Ruihao
    Wang, Hongqiang
    ADVANCED MATERIALS, 2025,
  • [24] Crystallization control of wide-bandgap perovskites for efficient solar cells via adding an anti-solvent into the perovskite precursor
    Liu, Zhihai
    Wang, Lei
    Liu, Xi
    Xie, Xiaoyin
    Chen, Ping
    NANOSCALE, 2024, 16 (15) : 7670 - 7677
  • [25] Surface repair of wide-bandgap perovskites for high-performance all-perovskite tandem solar cells
    Lv, Xiaojing
    Li, Weisheng
    Zhang, Jin
    Yang, Yujie
    Jia, Xuefei
    Ji, Yitong
    Lin, Qianqian
    Huang, Wenchao
    Bu, Tongle
    Ren, Zhiwei
    Yao, Canglang
    Huang, Fuzhi
    Cheng, Yi-Bing
    Tong, Jinhui
    JOURNAL OF ENERGY CHEMISTRY, 2024, 93 : 64 - 70
  • [26] Efficient and Stable Inverted Wide-Bandgap Perovskite Solar Cells and Modules Enabled by Hybrid Evaporation-Solution Method
    Afshord, Amir Zarean
    Uzuner, Bahri Eren
    Soltanpoor, Wiria
    Sedani, Salar H.
    Aernouts, Tom
    Gunbas, Gorkem
    Kuang, Yinghuan
    Yerci, Selcuk
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (31)
  • [27] Multifunctional Spacer in 2D/3D Wide-Bandgap Perovskite for Monolithic Perovskite/Silicon Tandem Solar Cells
    Ding, Yi-an
    Yang, Xin
    Wang, Xiaoting
    Liu, Yuanzhong
    Yan, Yiran
    Zhu, Xiangrong
    Huang, Jin
    Yang, Liyou
    Li, Lina
    Fu, Qiang
    Lu, Linfeng
    Ji, Xiaofei
    SOLAR RRL, 2024, 8 (11)
  • [28] Stabilizing Wide-Bandgap Perovskite with Nanoscale Inorganic Halide Barriers for Next-Generation Tandem Technology
    Kim, Sunwoo
    Im, Doyun
    Yun, Yeonghun
    Vidyasagar, Devthade
    Yang, Sung Woong
    Choi, Won Chang
    Gunasekaran, Rajendra Kumar
    Lee, Sangheon
    Kim, Yong Tae
    Woo, Mun Young
    Kim, Dong Hoe
    Noh, Jun Hong
    Heo, Jaeyeong
    Chung, Roy Byung Kyu
    Lee, Sangwook
    ADVANCED ENERGY MATERIALS, 2024,
  • [29] Bifunctional Passivation of Wide-Bandgap Perovskite Solar Cells via Long-Chain Organic Ammonium Salts
    Han, Baoyu
    Cai, Hongkun
    Liu, Chao
    Hu, Zhihao
    Liu, Jifeng
    Li, Boyan
    Lin, Shuping
    Sun, Qi
    Li, Yingchen
    Guo, Qinwen
    Ni, Jian
    Li, Juan
    Zhang, Jianjun
    ACS APPLIED MATERIALS & INTERFACES, 2025, 17 (17) : 25400 - 25409
  • [30] Phase-Stable Wide-Bandgap Perovskites for Four-Terminal Perovskite/Silicon Tandem Solar Cells with Over 30% Efficiency
    Yao, Yuxin
    Hang, Pengjie
    Li, Biao
    Hu, Zechen
    Kan, Chenxia
    Xie, Jiangsheng
    Wang, Ying
    Zhang, Yiqiang
    Yang, Deren
    Yu, Xuegong
    SMALL, 2022, 18 (38)