Establishment of a CRISPR-Cas9-Mediated Genome Editing System in Flax

被引:1
作者
Wang, Chunming [1 ,4 ]
Sun, Chao [1 ]
Shi, Li [1 ]
Zhou, Jiannan [2 ]
Liu, Shuai [3 ]
Bai, Yongsheng [1 ]
Yu, Weichang [1 ,5 ]
机构
[1] Shenzhen Univ, Coll Life Sci & Oceanog, Guangdong Key Lab Plant Epigenet, Shenzhen 518060, Peoples R China
[2] Chinese Acad Trop Agr Sci, South Subtrop Crops Res Inst, Key Lab Trop Fruit Biol, Minist Agr, Zhanjiang, Peoples R China
[3] Shaanxi Acad Tradit Chinese Med, Xian, Peoples R China
[4] Shenzhen Acad Metrol & Qual Inspect, Shenzhen, Peoples R China
[5] China Good Crop Co Shenzhen Ltd, Shenzhen, Peoples R China
来源
CRISPR JOURNAL | 2025年 / 8卷 / 01期
基金
中国博士后科学基金;
关键词
TARGETED MUTAGENESIS; CRISPR/CAS9; SYSTEM; ENGINEERING FLAX; PLANTS; EXPRESSION; PRECISION; POTATO;
D O I
10.1089/crispr.2024.0064
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Flax is an important crop used for oil and fiber production. Although genetic engineering has been possible in flax, it is not commonly used to produce cultivars. However, the use of genome editing technology, which can produce site-specific mutations without introducing foreign genes, may be a valuable tool for creating elite cultivars that can be easily cultivated. The purpose of this study was to investigate the potential of genome editing in flax by establishing the clustered regularly interspaced short palindromic repeats (CR ISPR)-CRISPR-associated protein 9 (CRISPR-Cas9) genome editing system using the phytoene desaturase (PDS) gene, which produces albino mutants that are easily identifiable. Four sgRNAs were designed from two PDS genes of Flax (LuPDS1 and LuPDS2), and CRISPR-Cas9 genome editing vectors were constructed. After gene transformation, albino phenotypes were observed in transformed callus and regenerated plantlets on selection media. Polymerase chain reaction (PCR) amplification and sequencing of the PDS genes revealed deletions and insertions in the albino tissues, indicating successful editing of the PDS genes. Potential off-target sites were analyzed, but no off-target mutations were found, indicating the specificity of the CRISPR-Cas9 system. The establishment of a flax genome editing system using the CRISPR-Cas9 technology opens up new possibilities for the genetic engineering of flax. This study demonstrates the potential of genome editing in creating elite cultivars that can be easily cultivated, which can have significant implications for the flax industry.
引用
收藏
页码:51 / 59
页数:9
相关论文
共 50 条
  • [21] CRISPR-Cas9-mediated gene editing in human MPS I fibroblasts
    de Carvalho, Talita Giacomet
    Schuh, Roselena
    Pasqualim, Gabriela
    Pellenz, Felipe Matheus
    Filippi-Chiela, Eduardo Cremonese
    Giugliani, Roberto
    Baldo, Guilherme
    Matte, Ursula
    GENE, 2018, 678 : 33 - 37
  • [22] Inflammation conditional genome editing mediated by the CRISPR-Cas9 system
    Yuan, Tingting
    Tang, Honglin
    Xu, Xiaojie
    Shao, Jingjing
    Wu, Gaojun
    Cho, Young-Chang
    Ping, Yuan
    Liang, Guang
    ISCIENCE, 2023, 26 (06)
  • [23] Recent Advances in Genome Editing Using CRISPR/Cas9
    Ding, Yuduan
    Li, Hong
    Chen, Ling-Ling
    Xie, Kabin
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [24] CRISPR/Cas9 Based Genome Editing of Penicillium chrysogenum
    Pohl, C.
    Kiel, J. A. K. W.
    Driessen, A. J. M.
    Bovenberg, R. A. L.
    Nygard, Y.
    ACS SYNTHETIC BIOLOGY, 2016, 5 (07): : 754 - 764
  • [25] Efficient Genome Editing in Apple Using a CRISPR/Cas9 system
    Nishitani, Chikako
    Hirai, Narumi
    Komori, Sadao
    Wada, Masato
    Okada, Kazuma
    Osakabe, Keishi
    Yamamoto, Toshiya
    Osakabe, Yuriko
    SCIENTIFIC REPORTS, 2016, 6
  • [26] gRNA validation for wheat genome editing with the CRISPR-Cas9 system
    Arndell, Taj
    Sharma, Niharika
    Langridge, Peter
    Baumann, Ute
    Watson-Haigh, Nathan S.
    Whitford, Ryan
    BMC BIOTECHNOLOGY, 2019, 19 (01)
  • [27] Application and optimization of CRISPR-Cas9-mediated genome engineering in axolotl (Ambystoma mexicanum)
    Fei, Ji-Feng
    Lou, Wilson Pak-Kin
    Knapp, Dunja
    Murawala, Prayag
    Gerber, Tobias
    Taniguchi, Yuka
    Nowoshilow, Sergej
    Khattak, Shahryar
    Tanaka, Elly M.
    NATURE PROTOCOLS, 2018, 13 (12) : 2908 - 2943
  • [28] CRISPR/Cas9: A powerful tool for crop genome editing
    Song, Gaoyuan
    Jia, Meiling
    Chen, Kai
    Kong, Xingchen
    Khattak, Bushra
    Xie, Chuanxiao
    Li, Aili
    Mao, Long
    CROP JOURNAL, 2016, 4 (02): : 75 - 82
  • [29] Genome editing in rice and wheat using the CRISPR/Cas system
    Shan, Qiwei
    Wang, Yanpeng
    Li, Jun
    Gao, Caixia
    NATURE PROTOCOLS, 2014, 9 (10) : 2395 - 2410
  • [30] CRISPR-Cas9-mediated editing of starch branching enzymes results in altered starch structure in Brassica napus
    Wang, Liping
    Wang, You
    Makhmoudova, Amina
    Nitschke, Felix
    Tetlow, Ian J.
    Emes, Michael J.
    PLANT PHYSIOLOGY, 2022, 188 (04) : 1866 - 1886