TRACY-WIDOM LIMIT FOR FREE SUM OF RANDOM MATRICES

被引:0
|
作者
Ji, Hong chang [1 ]
Park, Jaewhi [2 ]
机构
[1] IST Austria, Klosterneuburg, Austria
[2] Korea Adv Inst Sci & Technol, Dept Math Sci, Daejeon, South Korea
基金
欧洲研究理事会; 新加坡国家研究基金会;
关键词
Random matrices; edge universality; free additive convolution; SPECTRAL STATISTICS; LARGEST EIGENVALUE; UNIVERSALITY; THEOREM; EDGE;
D O I
10.1214/24-AOP1705
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider fluctuations of the largest eigenvalues of the random matrix model A + UBU* where A and B are N x N deterministic Hermitian (or symmetric) matrices and U is a Haar-distributed unitary (or orthogonal) matrix. We prove that the largest eigenvalue weakly converges to the GUE (or GOE) Tracy-Widom distribution, under mild assumptions on A and B to guarantee that the density of states of the model decays as square root around the upper edge. Our proof is based on the comparison of the Green function along the Dyson Brownian motion starting from the matrix A+ UBU* and ending at time N - 1 / 3 +o( 1 ) . As a byproduct of our proof, we also prove an optimal local law for the Dyson Brownian motion up to the constant time scale.
引用
收藏
页码:239 / 298
页数:60
相关论文
共 50 条
  • [1] Local law and Tracy-Widom limit for sparse random matrices
    Lee, Ji Oon
    Schnelli, Kevin
    PROBABILITY THEORY AND RELATED FIELDS, 2018, 171 (1-2) : 543 - 616
  • [2] The Tracy-Widom Law for Some Sparse Random Matrices
    Sodin, Sasha
    JOURNAL OF STATISTICAL PHYSICS, 2009, 136 (05) : 834 - 841
  • [3] LOCAL LAW AND TRACY-WIDOM LIMIT FOR SPARSE SAMPLE COVARIANCE MATRICES
    Hwang, Jong Yun
    Lee, Ji Oon
    Schnelli, Kevin
    ANNALS OF APPLIED PROBABILITY, 2019, 29 (05) : 3006 - 3036
  • [4] TRACY-WIDOM LIMIT FOR KENDALL'S TAU
    Bao, Zhigang
    ANNALS OF STATISTICS, 2019, 47 (06) : 3504 - 3532
  • [5] Local law and Tracy-Widom limit for sparse stochastic block models
    Hwang, Jong Yun
    Lee, Ji Oon
    Yang, Wooseok
    BERNOULLI, 2020, 26 (03) : 2400 - 2435
  • [6] THE TRACY-WIDOM LAW FOR THE LARGEST EIGENVALUE OF F TYPE MATRICES
    Han, Xiao
    Pan, Guangming
    Zhang, Bo
    ANNALS OF STATISTICS, 2016, 44 (04) : 1564 - 1592
  • [7] Tracy-Widom law for the extreme eigenvalues of sample correlation matrices
    Bao, Zhigang
    Pan, Guangming
    Zhou, Wang
    ELECTRONIC JOURNAL OF PROBABILITY, 2012, 17
  • [8] Tracy-Widom statistic for the largest eigenvalue of autoscaled real matrices
    Saccenti, Edoardo
    Smilde, Age K.
    Westerhuis, Johan A.
    Hendriks, Margriet M. W. B.
    JOURNAL OF CHEMOMETRICS, 2011, 25 (12) : 644 - 652
  • [9] Deformations of the Tracy-Widom distribution
    Bohigas, O.
    de Carvalho, J. X.
    Pato, M. P.
    PHYSICAL REVIEW E, 2009, 79 (03):
  • [10] Tracy-Widom Distribution for Heterogeneous Gram Matrices With Applications in Signal Detection
    Ding, Xiucai
    Yang, Fan
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (10) : 6682 - 6715