A systematic review and meta-analysis on the performance of convolutional neural networks ECGs in the diagnosis of hypertrophic cardiomyopathy

被引:2
作者
Queiroz, Ivo [1 ]
Defante, Maria L. R. [2 ]
Barbosa, Lucas M. [3 ]
Tavares, Arthur Henrique [4 ]
Pimentel, Tulio [5 ]
Mendes, Beatriz Ximenes [6 ]
机构
[1] Univ Catolica Pernambuco, Med Dept, Recife, Brazil
[2] Redentor Univ Ctr, Med Dept, Itaperuna, Brazil
[3] Univ Fed Minas Gerais, Dept Med, Belo Horizonte, Brazil
[4] Univ Pernambuco, Med Dept, Recife, Brazil
[5] Univ Fed Pernambuco, Med Dept, Recife, Brazil
[6] Unichristus, Med Dept, Fortaleza, Brazil
关键词
Convolutional neural networks; Hypertrophic cardiomyopathy; Diagnostic performance; Diagnostic meta-analysis; MODELS;
D O I
10.1016/j.jelectrocard.2025.153888
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Introduction: Hypertrophic cardiomyopathy (HCM) is a leading cause of sudden cardiac death in younger individuals. Accurate diagnosis is crucial for management and improving patient outcomes. The application of convolutional Neural Networks (CNN), a type of AI modeling, to electrocardiogram (ECG) analysis, presents a promising and optimistic avenue for the detection of HCM. We conducted a meta-analysis to assess the effectiveness of CNN models in diagnosing HCM through ECG. Methods: MEDLINE, Embase, and Cochrane were searched up to August 12, 2024, focusing on CNN ECG-based HCM detection models. The outcomes were sensitivity, specificity, and SROC. Pooled proportions were calculated using a random-effects model with 95 % confidence intervals (CIs), and heterogeneity was assessed using the I2 statistics. This study was registered on PROSPERO protocol CRD42024581925. Results: Our analysis included 16 studies with ECG data from 513,972 patients. The AI algorithms employed CNNs for ECG interpretation. Sixteen studies contributed to the qualitative analysis, while seven studies for the pooled SROC with an 11 % false positive rate, with a sensitivity of 89 % (95 % CI 86-92 %) and a specificity of 88 % (95 % CI 81-93 %). Conclusion: AI-driven ECG interpretation shows high accuracy and sensitivity in detecting HCM, though the modest PPV suggests that AI should be integrated with clinical evaluation to enhance reliability, particularly in screening settings.
引用
收藏
页数:9
相关论文
共 40 条
[31]  
Siontis KC, 2023, JACC: Adv, V2
[32]   Hypertrophic cardiomyopathy detection with artificial intelligence electrocardiography in international cohorts: an external validation study [J].
Siontis, Konstantinos C. ;
Wieczorek, Mikolaj A. ;
Maanja, Maren ;
Hodge, David O. ;
Kim, Hyung-Kwan ;
Lee, Hyun-Jung ;
Lee, Heesun ;
Lim, Jaehyun ;
Park, Chan Soon ;
Ariga, Rina ;
Raman, Betty ;
Mahmod, Masliza ;
Watkins, Hugh ;
Neubauer, Stefan ;
Windecker, Stephan ;
Siontis, George C. M. ;
Gersh, Bernard J. ;
Ackerman, Michael J. ;
Attia, Zachi, I ;
Friedman, Paul A. ;
Noseworthy, Peter A. .
EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2024, 5 (04) :416-426
[33]   Saliency maps provide insights into artificial intelligence-based electrocardiography models for detecting hypertrophic cardiomyopathy [J].
Siontis, Konstantinos C. ;
Suarez, Abraham Baez ;
Sehrawat, Ojasav ;
Ackerman, Michael J. ;
Attia, Zachi I. ;
Friedman, Paul A. ;
Noseworthy, Peter A. ;
Maanja, Maren .
JOURNAL OF ELECTROCARDIOLOGY, 2023, 81 :286-291
[34]   Multimodal deep learning enhances diagnostic precision in left ventricular hypertrophy [J].
Soto, Jessica Torres ;
Hughes, J. Weston ;
Sanchez, Pablo Amador ;
Perez, Marco ;
Ouyang, David ;
Ashley, Euan A. .
EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2022, 3 (03) :380-389
[35]  
Taylor A., 2000, Programming and design of schools with in the context of community, planning and design for a 21st century public education system, 1 Mayis, 2011
[36]   Medical artificial intelligence for clinicians: the lost cognitive perspective [J].
Tikhomirov, Lana ;
Semmler, Carolyn ;
McCradden, Melissa ;
Searston, Rachel ;
Ghassemi, Marzyeh ;
Oakden-Rayner, Lauren .
LANCET DIGITAL HEALTH, 2024, 6 (08) :e589-e594
[37]   Model for classification of heart failure severity in patients with hypertrophic cardiomyopathy using a deep neural network algorithm with a 12-lead electrocardiogram [J].
Togo, Sanshiro ;
Sugiura, Yuki ;
Suzuki, Sayumi ;
Ohno, Kazuto ;
Akita, Keitaro ;
Suwa, Kenichiro ;
Shibata, Shin-ichi ;
Kimura, Michio ;
Maekawa, Yuichiro .
OPEN HEART, 2023, 10 (02)
[38]   Transthoracic echocardiography of hypertrophic cardiomyopathy in adults: a practical guideline from the British Society of Echocardiography [J].
Turvey, Lauren ;
Augustine, Daniel X. ;
Robinson, Shaun ;
Oxborough, David ;
Stout, Martin ;
Smith, Nicola ;
Harkness, Allan ;
Williams, Lynne ;
Steeds, Richard P. ;
Bradlow, William .
ECHO RESEARCH AND PRACTICE, 2021, 8 (01) :G61-G86
[39]   Successes and challenges of artificial intelligence in cardiology [J].
Vandenberk, Bert ;
Chew, Derek S. ;
Prasana, Dinesh ;
Gupta, Sunny ;
Exner, Derek V. .
FRONTIERS IN DIGITAL HEALTH, 2023, 5
[40]   QUADAS-2: A Revised Tool for the Quality Assessment of Diagnostic Accuracy Studies [J].
Whiting, Penny F. ;
Rutjes, Anne W. S. ;
Westwood, Marie E. ;
Mallett, Susan ;
Deeks, Jonathan J. ;
Reitsma, Johannes B. ;
Leeflang, Mariska M. G. ;
Sterne, Jonathan A. C. ;
Bossuyt, Patrick M. M. .
ANNALS OF INTERNAL MEDICINE, 2011, 155 (08) :529-U104