A systematic review and meta-analysis on the performance of convolutional neural networks ECGs in the diagnosis of hypertrophic cardiomyopathy

被引:2
作者
Queiroz, Ivo [1 ]
Defante, Maria L. R. [2 ]
Barbosa, Lucas M. [3 ]
Tavares, Arthur Henrique [4 ]
Pimentel, Tulio [5 ]
Mendes, Beatriz Ximenes [6 ]
机构
[1] Univ Catolica Pernambuco, Med Dept, Recife, Brazil
[2] Redentor Univ Ctr, Med Dept, Itaperuna, Brazil
[3] Univ Fed Minas Gerais, Dept Med, Belo Horizonte, Brazil
[4] Univ Pernambuco, Med Dept, Recife, Brazil
[5] Univ Fed Pernambuco, Med Dept, Recife, Brazil
[6] Unichristus, Med Dept, Fortaleza, Brazil
关键词
Convolutional neural networks; Hypertrophic cardiomyopathy; Diagnostic performance; Diagnostic meta-analysis; MODELS;
D O I
10.1016/j.jelectrocard.2025.153888
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Introduction: Hypertrophic cardiomyopathy (HCM) is a leading cause of sudden cardiac death in younger individuals. Accurate diagnosis is crucial for management and improving patient outcomes. The application of convolutional Neural Networks (CNN), a type of AI modeling, to electrocardiogram (ECG) analysis, presents a promising and optimistic avenue for the detection of HCM. We conducted a meta-analysis to assess the effectiveness of CNN models in diagnosing HCM through ECG. Methods: MEDLINE, Embase, and Cochrane were searched up to August 12, 2024, focusing on CNN ECG-based HCM detection models. The outcomes were sensitivity, specificity, and SROC. Pooled proportions were calculated using a random-effects model with 95 % confidence intervals (CIs), and heterogeneity was assessed using the I2 statistics. This study was registered on PROSPERO protocol CRD42024581925. Results: Our analysis included 16 studies with ECG data from 513,972 patients. The AI algorithms employed CNNs for ECG interpretation. Sixteen studies contributed to the qualitative analysis, while seven studies for the pooled SROC with an 11 % false positive rate, with a sensitivity of 89 % (95 % CI 86-92 %) and a specificity of 88 % (95 % CI 81-93 %). Conclusion: AI-driven ECG interpretation shows high accuracy and sensitivity in detecting HCM, though the modest PPV suggests that AI should be integrated with clinical evaluation to enhance reliability, particularly in screening settings.
引用
收藏
页数:9
相关论文
共 40 条
[1]   Artificial fi cial intelligence-based - based screening for cardiomyopathy in an obstetric population: A pilot study [J].
Adedinsewo, Demilade ;
Morales-Lara, Andrea Carolina ;
Hardway, Heather ;
Johnson, Patrick ;
Young, Kathleen A. ;
Garzon-Siatoya, Wendy Tatiana ;
Tobah, Yvonne S. Butler ;
Rose, Carl H. ;
Burnette, David ;
Seccombe, Kendra ;
Fussell, Mia ;
Phillips, Sabrina ;
Lopez-Jimenez, Francisco ;
Attia, Zachi I. ;
Friedman, Paul A. ;
Carter, Rickey E. ;
Noseworthy, Peter A. .
CARDIOVASCULAR DIGITAL HEALTH JOURNAL, 2024, 5 (03) :132-140
[2]   Revolutionizing healthcare: the role of artificial intelligence in clinical practice [J].
Alowais, Shuroug A. ;
Alghamdi, Sahar S. ;
Alsuhebany, Nada ;
Alqahtani, Tariq ;
Alshaya, Abdulrahman I. ;
Almohareb, Sumaya N. ;
Aldairem, Atheer ;
Alrashed, Mohammed ;
Bin Saleh, Khalid ;
Badreldin, Hisham A. ;
Al Yami, Majed S. ;
Al Harbi, Shmeylan ;
Albekairy, Abdulkareem M. .
BMC MEDICAL EDUCATION, 2023, 23 (01)
[3]  
[Anonymous], 2024, Chapter 10: Analysing data and undertaking meta-analyses | Cochrane Training
[4]   How to perform a meta-analysis with R: a practical tutorial [J].
Balduzzi, Sara ;
Ruecker, Gerta ;
Schwarzer, Guido .
EVIDENCE-BASED MENTAL HEALTH, 2019, 22 (04) :153-160
[5]   Electrocardiography Screening for Hypertrophic Cardiomyopathy [J].
Campbell, Matthew J. ;
Zhou, Xuefu ;
Han, Chia ;
Abrishami, Hedayat ;
Webster, Gregory ;
Miyake, Christina Y. ;
Knilans, Timothy K. ;
Czosek, Richard J. .
PACE-PACING AND CLINICAL ELECTROPHYSIOLOGY, 2016, 39 (09) :944-950
[6]   Deep learning-derived 12-lead electrocardiogram-based genotype prediction for hypertrophic cardiomyopathy: a pilot study [J].
Chen, LaiTe ;
Fu, GuoSheng ;
Jiang, ChenYang .
ANNALS OF MEDICINE, 2023, 55 (01)
[7]   Multinational Federated Learning Approach to Train ECG and Echocardiogram Models for Hypertrophic Cardiomyopathy Detection [J].
Goto, Shinichi ;
Solanki, Divyarajsinhji ;
John, Jenine E. ;
Yagi, Ryuichiro ;
Homilius, Max ;
Ichihara, Genki ;
Katsumata, Yoshinori ;
Gaggin, Hanna K. ;
Itabashi, Yuji ;
MacRae, Calum A. ;
Deo, Rahul C. .
CIRCULATION, 2022, 146 (10) :755-769
[8]   Five biases of new technologies [J].
Greenhalgh, Trisha .
BRITISH JOURNAL OF GENERAL PRACTICE, 2013, 63 (613) :425-425
[9]  
Guerrier K, 2022, EUR HEART J, V43, P1859
[10]   Derivation and Validation of a Screening Model for Hypertrophic Cardiomyopathy Based on Electrocardiogram Features [J].
Guo, Lanyan ;
Gao, Chao ;
Yang, Weiping ;
Ma, Zhiling ;
Zhou, Mengyao ;
Liu, Jianzheng ;
Shao, Hong ;
Wang, Bo ;
Hu, Guangyu ;
Zhao, Hang ;
Zhang, Ling ;
Guo, Xiong ;
Huang, Chong ;
Cui, Zhe ;
Song, Dandan ;
Sun, Fangfang ;
Liu, Liwen ;
Zhang, Fuyang ;
Tao, Ling .
FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 9