A HYBRID STEEPEST DESCENT METHOD FOR BILEVEL VARIATIONAL INEQUALITY PROBLEMS WITH THE FIXED POINT SET

被引:0
作者
Ram, Tirth [1 ]
Iqbal, Mohd [1 ]
Bhagat, Zeenat [1 ]
机构
[1] Univ Jammu, Dept Math, Jammu 180006, India
关键词
fixed point; bilevel variational inequality; Hilbert space; descent method; Lipschitz continuous; nonexpansive mapping; STRONG-CONVERGENCE; PROJECTION; ALGORITHM; STEP;
D O I
10.54379/JIASF-2024-3-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present a new hybrid steepest decent algorithm to solve the bilevel variational inequality problems, where the feasible set is the intersection of a variational inequality problem and the fixed point set of a nonexpansive mapping in a real Hilbert space. An iterative algorithm is introduced by using the hybrid steepest descent method and fixed-point formulation techniques. The strong convergence of the iterative sequences generated by the algorithm is shown under some suitable assumptions. In addition, the efficiency of our suggested algorithm is established by a numerical example.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 40 条
  • [1] An extragradient algorithm for solving bilevel pseudomonotone variational inequalities
    Anh, P. N.
    Kim, J. K.
    Muu, L. D.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2012, 52 (03) : 627 - 639
  • [2] Strong Convergence Theorem for the Lexicographic Ky Fan Inequality
    Anh P.N.
    Thuy L.Q.
    Anh T.T.H.
    [J]. Vietnam Journal of Mathematics, 2018, 46 (3) : 517 - 530
  • [3] Inertial subgradient projection techniques for solving a class of bilevel equilibrium problems
    Anh, Pham Ngoc
    Tu, Ho Phi
    Phi, Hoang
    [J]. OPTIMIZATION, 2024,
  • [4] A relaxed projection method for solving bilevel variational inequality problems
    Anh, Pham Ngoc
    Khanh, Phan Quoc
    Truong, Nguyen Duc
    [J]. OPTIMIZATION, 2024,
  • [5] INEXACT SIMULTANEOUS PROJECTION METHOD FOR SOLVING BILEVEL EQUILIBRIUM PROBLEMS
    Anh, Pham Ngoc
    Van Hong, Nguyen
    Gibali, Aviv
    [J]. FIXED POINT THEORY, 2023, 24 (02): : 487 - 506
  • [6] New projection methods for equilibrium problems over fixed point sets
    Anh, Pham Ngoc
    Van Hong, Nguyen
    [J]. OPTIMIZATION LETTERS, 2021, 15 (02) : 627 - 648
  • [7] Subgradient projection methods extended to monotone bilevel equilibrium problems in Hilbert spaces
    Anh, Pham Ngoc
    Tu, Ho Phi
    [J]. NUMERICAL ALGORITHMS, 2021, 86 (01) : 55 - 74
  • [8] A projection method for bilevel variational inequalities
    Anh, Tran T. H.
    Long, Le B.
    Anh, Tran V.
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [9] Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
  • [10] GENERALIZED PROXIMAL DISTANCES FOR BILEVEL EQUILIBRIUM PROBLEMS
    Bento, G. C.
    Cruz Neto, J. X.
    Lopes, J. O.
    Soares, P. A., Jr.
    Soubeyran, A.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2016, 26 (01) : 810 - 830