Targeting lipid metabolism via nanomedicine: A prospective strategy for cancer therapy

被引:4
作者
Huang, Xing [1 ]
Hou, Shengzhong [1 ]
Li, Yinggang [1 ]
Xu, Gang [1 ,2 ,3 ]
Xia, Ning [1 ]
Duan, Zhenyu [1 ,2 ,3 ]
Luo, Kui [1 ,2 ,3 ]
Tian, Bole [1 ]
机构
[1] Sichuan Univ, Div Pancreat Surg, Dept Gen Surg, Dept Radiol,Huaxi MR Res Ctr HMRRC,Liver Transplan, Chengdu 610041, Peoples R China
[2] Chinese Acad Med Sci, Funct & Mol Imaging Key Lab Sichuan Prov, Key Lab Transplant Engn & Immunol, NHC, Chengdu 610041, Peoples R China
[3] Chinese Acad Med Sci, Res Unit Psychoradiol, Chengdu 610041, Peoples R China
基金
中国国家自然科学基金;
关键词
Lipid metabolic reprogramming; Drug delivery systems; Cancer therapy; Tumor microenvironment; FATTY-ACID SYNTHASE; TUMOR MICROENVIRONMENT; BREAST-CANCER; POLYETHYLENE-GLYCOL; CARBOXYLASE-ALPHA; SUPPRESSOR-CELLS; DRUG-DELIVERY; SOLID TUMORS; PHASE-II; CHOLESTEROL;
D O I
10.1016/j.biomaterials.2024.123022
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Lipid metabolism has been increasingly recognized to play an influencing role in tumor initiation, progression, metastasis, and therapeutic drug resistance. Targeting lipid metabolic reprogramming represents a promising therapeutic strategy. Despite their structural complexity and poor targeting efficacy, lipid-metabolizing drugs, either used alone or in combination with chemotherapeutic agents, have been employed in clinical practice. The advent of nanotechnology offers new approaches to enhancing therapeutic effects, includingthe targeted delivery and integration of lipid metabolic reprogramming with chemotherapy, photodynamic therapy (PDT), and immunotherapy. The integrated nanoformulation, nanomedicine, could significantly advance the field of lipid metabolism therapy. In this review, we will briefly introduce the concept of cancer lipid metabolism reprogramming, then elaborate the latest advances in engineered nanomedicine for targeting lipid metabolism during cancer treatment, and finally provide our insights into future perspectives of nanomedicine for interference with lipid metabolism in the tumor microenvironment.
引用
收藏
页数:31
相关论文
共 272 条
[1]   Statin treatment and outcomes of metastatic pancreatic cancer: a pooled analysis of two phase III studies [J].
Abdel-Rahman, O. .
CLINICAL & TRANSLATIONAL ONCOLOGY, 2019, 21 (06) :810-816
[2]  
Ahmed TA, 2023, INT J NANOMED, V18, P6689, DOI 10.2147/IJN.S438704
[3]   Exosomes of immune cell origin and their therapeutic potential for tumors [J].
Ai, Hongru ;
Zou, Yitan ;
Zheng, Xinya ;
Li, Guangyao ;
Lei, Changhai ;
Fu, Wenyan ;
Hu, Shi .
VIEW, 2024, 5 (05)
[4]   Exogenous lipid uptake induces metabolic and functional reprogramming of tumor-associated myeloid-derived suppressor cells [J].
Al-Khami, Amir A. ;
Zheng, Liqin ;
Del Valle, Luis ;
Hossain, Fokhrul ;
Wyczechowska, Dorota ;
Zabaleta, Jovanny ;
Sanchez, Maria D. ;
Dean, Matthew J. ;
Rodriguez, Paulo C. ;
Ochoa, Augusto C. .
ONCOIMMUNOLOGY, 2017, 6 (10)
[5]   Cytotoxic activity of cholesterol oxidase produced by Streptomyces sp. AKHSS against cancerous cell lines: mechanism of action in HeLa cells [J].
Alapati, Kavitha ;
Handanahal, Savithri S. .
WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2021, 37 (08)
[6]   Fatty acid synthase mediates EGFR palmitoylation in EGFR mutated non-small cell lung cancer [J].
Ali, Azhar ;
Levantini, Elena ;
Teo, Jun Ting ;
Goggi, Julian ;
Clohessy, John G. ;
Wu, Chan Shuo ;
Chen, Leilei ;
Yang, Henry ;
Krishnan, Indira ;
Kocher, Olivier ;
Zhang, Junyan ;
Soo, Ross A. ;
Bhakoo, Kishore ;
Chin, Tan Min ;
Tenen, Daniel G. .
EMBO MOLECULAR MEDICINE, 2018, 10 (03)
[7]   Fatty acid metabolic reprogramming via mTOR-mediated inductions of PPARγ directs early activation of T cells [J].
Angela, Mulki ;
Endo, Yusuke ;
Asou, Hikari K. ;
Yamamoto, Takeshi ;
Tumes, Damon J. ;
Tokuyama, Hirotake ;
Yokote, Koutaro ;
Nakayama, Toshinori .
NATURE COMMUNICATIONS, 2016, 7
[8]   Host Wnt5a Potentiates Microenvironmental Regulation of Ovarian Cancer Metastasis [J].
Asem, Marwa ;
Young, Allison M. ;
Oyama, Carlysa ;
Claure de la Zerda, Alejandro ;
Liu, Yueying ;
Yang, Jing ;
Hilliard, Tyvette S. ;
Johnson, Jeffery ;
Harper, Elizabeth, I ;
Guldner, Ian ;
Zhang, Siyuan ;
Page-Mayberry, Toni ;
Kaliney, William J. ;
Stack, M. Sharon .
CANCER RESEARCH, 2020, 80 (05) :1156-1170
[9]   A Stromal Lysolipid-Autotaxin Signaling Axis Promotes Pancreatic Tumor Progression [J].
Auciello, Francesca R. ;
Bulusu, Vinay ;
Oon, Chet ;
Tat-Mulder, Jacqueline ;
Berry, Mark ;
Bhattacharyya, Sohinee ;
Tumanov, Sergey ;
Allen-Petersen, Brittany L. ;
Link, Jason ;
Kendsersky, Nicholas D. ;
Vringer, Esmee ;
Schug, Michelle ;
Novo, David ;
Hwang, Rosa F. ;
Evans, Ronald M. ;
Nixon, Colin ;
Dorrell, Craig ;
Morton, Jennifer P. ;
Norman, Jim C. ;
Sears, Rosalie C. ;
Kamphorst, Jurre J. ;
Sherman, Mara H. .
CANCER DISCOVERY, 2019, 9 (05) :617-627
[10]   Cytotoxic and Pro-Apoptotic Effects of a Sub-Toxic Concentration of Fluvastatin on OVCAR3 Ovarian Cancer Cells After its Optimized Formulation to Melittin Nano-Conjugates [J].
Badr-Eldin, Shaimaa M. ;
Alhakamy, Nabil A. ;
Fahmy, Usama A. ;
Ahmed, Osama A. A. ;
Asfour, Hani Z. ;
Althagafi, Abdulhamid A. ;
Aldawsari, Hibah M. ;
Rizg, Waleed Y. ;
Mahdi, Wael A. ;
Alghaith, Adel F. ;
Alshehri, Sultan ;
Caraci, Filippo ;
Caruso, Giuseppe .
FRONTIERS IN PHARMACOLOGY, 2021, 11