Fabrication and application of 3D Terahertz metamaterials with vertical multinanogaps for spectroscopic sensing

被引:0
作者
Inomata, Naoki [1 ]
Takahashi, Tomotsugu [1 ]
Sakai, Yuki [1 ]
Okatani, Taiyu [1 ]
Kanamori, Yoshiaki [1 ]
机构
[1] Tohoku Univ, Grad Sch Engn, Sendai 9808579, Japan
关键词
Terahertz metamaterials; Spectroscopic detection; Nanogaps;
D O I
10.1038/s41598-025-98611-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Terahertz (THz) metamaterials have garnered attention for their unique electromagnetic properties and potential applications in biomaterial sensing, offering label-free, non-contact capabilities. However, their performance is limited by their diffraction limits, impeding the detection of small objects. This study presents an approach for fabricating three-dimensional (3D) THz metamaterials with vertically oriented, high-aspect-ratio multinanogaps. These 3D metamaterials comprise laminated cross-shaped metal layers, which induce electromagnetic resonance, and polymer layers that support the metal layers at the center of the cross shape. Air nanogaps formed between metal layers achieved aspect ratios of > 64. Conventional microfabrication techniques were employed, including spin coating, metal sputtering deposition, photolithography, ion milling etching, and oxygen plasma etching, without relying on electron beam lithography. Spectroscopic analyses of the fabricated metamaterials revealed that the multilayered structure exhibited a deeper dip than single-layered and double-layered configurations. To validate THz sensing, we used isopropyl alcohol (IPA) for THz spectroscopy applications; the spectra indicated significant peak frequency shifts in the transmission dip of the fabricated device with and without IPA. These findings highlight the application scope of the as-prepared 3D THz metamaterial in material sensing techniques, enhancing THz-metamaterial-based device performance.
引用
收藏
页数:8
相关论文
共 34 条
[1]   Large area nanofabrication of butterfly wing's three dimensional ultrastructures [J].
Aryal, Mukti ;
Ko, Doo-Hyun ;
Tumbleston, John R. ;
Gadisa, Abay ;
Samulski, Edward T. ;
Lopez, Rene .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2012, 30 (06)
[2]   Highly selective electroplated nickel mask for lithium niobate dry etching [J].
Benchabane, Sarah ;
Robert, Laurent ;
Rauch, Jean-Yves ;
Khelif, Abdelkrim ;
Laude, Vincent .
JOURNAL OF APPLIED PHYSICS, 2009, 105 (09)
[3]   A terahertz metamaterial with unnaturally high refractive index [J].
Choi, Muhan ;
Lee, Seung Hoon ;
Kim, Yushin ;
Kang, Seung Beom ;
Shin, Jonghwa ;
Kwak, Min Hwan ;
Kang, Kwang-Young ;
Lee, Yong-Hee ;
Park, Namkyoo ;
Min, Bumki .
NATURE, 2011, 470 (7334) :369-373
[4]   Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces [J].
Cong, Longqing ;
Tan, Siyu ;
Yahiaoui, Riad ;
Yan, Fengping ;
Zhang, Weili ;
Singh, Ranjan .
APPLIED PHYSICS LETTERS, 2015, 106 (03)
[5]   THz Pulsed Imaging in Biomedical Applications [J].
D'Arco, Annalisa ;
Di Fabrizio, Marta ;
Dolci, Valerio ;
Petrarca, Massimo ;
Lupi, Stefano .
CONDENSED MATTER, 2020, 5 (02)
[6]   The growth of biomedical terahertz research [J].
Fan, Shuting ;
He, Yuezhi ;
Ung, Benjamin S. ;
Pickwell-MacPherson, Emma .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (37)
[7]   Bioinspired medical needles: a review of the scientific literature [J].
Fung-A-Jou, Zola ;
Bloemberg, Jette ;
Breedveld, Paul .
BIOINSPIRATION & BIOMIMETICS, 2023, 18 (04)
[8]   Coupling effects in 3D plasmonic structures templated by &ITMorpho &ITbutterfly wings [J].
He, Jiaqing ;
Shen, Qingchen ;
Yang, Shuai ;
He, Gufeng ;
Tao, Peng ;
Song, Chengyi ;
Wu, Jianbo ;
Deng, Tao ;
Shang, Wen .
NANOSCALE, 2018, 10 (02) :533-537
[9]   Enhanced sensitivity in THz plasmonic sensors with silver nanowires [J].
Hong, J. T. ;
Jun, S. W. ;
Cha, S. H. ;
Park, J. Y. ;
Lee, S. ;
Shin, G. A. ;
Ahn, Y. H. .
SCIENTIFIC REPORTS, 2018, 8
[10]   Recent Advances in Reactive Ion Etching and Applications of High-Aspect-Ratio Microfabrication [J].
Huff, Michael .
MICROMACHINES, 2021, 12 (08)