Multi-Objective Optimization Accelerates the De Novo Design of Antimicrobial Peptide for Staphylococcus aureus

被引:0
|
作者
Yang, Cheng-Hong [1 ,2 ,3 ,4 ]
Chen, Yi-Ling [1 ]
Cheung, Tin-Ho [1 ]
Chuang, Li-Yeh [5 ,6 ]
机构
[1] Natl Kaohsiung Univ Sci & Technol, Dept Elect Engn, Kaohsiung 807618, Taiwan
[2] Tainan Univ Technol, Dept Informat Management, Tainan 710302, Taiwan
[3] Kaohsiung Med Univ, PhD Program Biomed Engn, Kaohsiung 807378, Taiwan
[4] Kaohsiung Med Univ, Drug Dev & Value Creat Res Ctr, Kaohsiung 807378, Taiwan
[5] I Shou Univ, Dept Chem Engn, Kaohsiung 824005, Taiwan
[6] I Shou Univ, Inst Biotechnol Engn & Chem Engn, Kaohsiung 824005, Taiwan
关键词
multi-objective optimization; physicochemical properties; antimicrobial peptide; <italic>Staphylococcus aureus</italic>;
D O I
10.3390/ijms252413688
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Humans have long used antibiotics to fight bacteria, but increasing drug resistance has reduced their effectiveness. Antimicrobial peptides (AMPs) are a promising alternative with natural broad-spectrum activity against bacteria and viruses. However, their instability and hemolysis limit their medical use, making the design and improvement of AMPs a key research focus. Designing antimicrobial peptides with multiple desired properties using machine learning is still challenging, especially with limited data. This study utilized a multi-objective optimization method, the non-dominated sorting genetic algorithm II (NSGA-II), to enhance the physicochemical properties of peptide sequences and identify those with improved antimicrobial activity. Combining NSGA-II with neural networks, the approach efficiently identified promising AMP candidates and accurately predicted their antibacterial effectiveness. This method significantly advances by optimizing factors like hydrophobicity, instability index, and aliphatic index to improve peptide stability. It offers a more efficient way to address the limitations of AMPs, paving the way for the development of safer and more effective antimicrobial treatments.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Multi-Objective Optimization Methods in De Novo Drug Design
    Nicolaou, C. A.
    Kannas, C.
    Loizidou, E.
    MINI-REVIEWS IN MEDICINAL CHEMISTRY, 2012, 12 (10) : 979 - 987
  • [2] Multi-Objective Molecular De Novo Design by Adaptive Fragment Prioritization
    Reutlinger, Michael
    Rodrigues, Tiago
    Schneider, Petra
    Schneider, Gisbert
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (16) : 4244 - 4248
  • [3] Multi-objective de novo adrug design using evolutionary graphs
    Christos A Nicolaou
    CS Pattichis
    Chemistry Central Journal, 2 (Suppl 1)
  • [4] Multi-objective Genetic Algorithm for De Novo Drug Design (MoGADdrug)
    Devi, R. Vasundhara
    Sathya, S. Siva
    Coumar, Mohane S.
    CURRENT COMPUTER-AIDED DRUG DESIGN, 2021, 17 (03) : 445 - 457
  • [5] Antimicrobial peptide capsids of de novo design
    Emiliana De Santis
    Hasan Alkassem
    Baptiste Lamarre
    Nilofar Faruqui
    Angelo Bella
    James E. Noble
    Nicola Micale
    Santanu Ray
    Jonathan R. Burns
    Alexander R. Yon
    Bart W. Hoogenboom
    Maxim G. Ryadnov
    Nature Communications, 8
  • [6] Antimicrobial peptide capsids of de novo design
    De Santis, Emiliana
    Alkassem, Hasan
    Lamarre, Baptiste
    Faruqui, Nilofar
    Bella, Angelo
    Noble, James E.
    Micale, Nicola
    Ray, Santanu
    Burns, Jonathan R.
    Yon, Alexander R.
    Hoogenboom, Bart W.
    Ryadnov, Maxim G.
    NATURE COMMUNICATIONS, 2017, 8
  • [7] Multi-objective de novo drug design with conditional graph generative model
    Li, Yibo
    Zhang, Liangren
    Liu, Zhenming
    JOURNAL OF CHEMINFORMATICS, 2018, 10
  • [8] Multi-objective de novo drug design with conditional graph generative model
    Yibo Li
    Liangren Zhang
    Zhenming Liu
    Journal of Cheminformatics, 10
  • [9] A multi-objective optimisation approach to the design of experiment in de novo assembly projects
    Nadalin, Francesca
    Vezzi, Francesco
    Policriti, Alberto
    2012 23RD INTERNATIONAL WORKSHOP ON DATABASE AND EXPERT SYSTEMS APPLICATIONS (DEXA), 2012, : 213 - 217
  • [10] A de novo-designed antimicrobial peptide with activity against multiresistant Staphylococcus aureus acting on RsbW kinase
    Dangel, Alexandra
    Ackermann, Nikolaus
    Abdel-Hadi, Omar
    Maier, Richard
    Oender, Kamil
    Francois, Patrice
    Mueller, Carsten W.
    Pane-Farre, Jan
    Engelmann, Susanne
    Schrenzel, Jacques
    Heesemann, Juergen
    Lindermayr, Christian
    FASEB JOURNAL, 2013, 27 (11): : 4476 - 4488