Archive-Based Single-Objective Evolutionary Algorithms for Submodular Optimization

被引:0
作者
Neumann, Frank [1 ]
Rudolph, Guenter [2 ]
机构
[1] Univ Adelaide, Sch Comp & Math Sci, Optimisat & Logist, Adelaide, SA, Australia
[2] TU Dortmund Univ, Dept Comp Sci, Computat Intelligence, Dortmund, Germany
来源
PARALLEL PROBLEM SOLVING FROM NATURE-PSN XVIII, PPSN 2024, PT III | 2024年 / 15150卷
基金
澳大利亚研究理事会;
关键词
evolutionary algorithms; submodular optimization; runtime analysis; theory;
D O I
10.1007/978-3-031-70071-2_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Constrained submodular optimization problems play a key role in the area of combinatorial optimization as they capture many NP-hard optimization problems. So far, Pareto optimization approaches using multi-objective formulations have been shown to be successful to tackle these problems while single-objective formulations lead to difficulties for algorithms such as the (1 + 1)-EA due to the presence of local optima. We introduce for the first time single-objective algorithms that are provably successful for different classes of constrained submodular maximization problems. Our algorithms are variants of the (1 + lambda)-EA and (1+1)-EA and increase the feasible region of the search space incrementally in order to deal with the considered submodular problems.
引用
收藏
页码:166 / 180
页数:15
相关论文
共 15 条
[1]  
Crawford VG, 2021, PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, P1661
[2]   MAXIMIZING NON-MONOTONE SUBMODULAR FUNCTIONS [J].
Feige, Uriel ;
Mirrokni, Vahab S. ;
Vondrak, Jan .
SIAM JOURNAL ON COMPUTING, 2011, 40 (04) :1133-1153
[3]   Maximizing Submodular Functions under Matroid Constraints by Evolutionary Algorithms [J].
Friedrich, Tobias ;
Neumann, Frank .
EVOLUTIONARY COMPUTATION, 2015, 23 (04) :543-558
[4]   Approximating Covering Problems by Randomized Search Heuristics Using Multi-Objective Models [J].
Friedrich, Tobias ;
He, Jun ;
Hebbinghaus, Nils ;
Neumann, Frank ;
Witt, Carsten .
EVOLUTIONARY COMPUTATION, 2010, 18 (04) :617-633
[5]  
Giel O, 2003, IEEE C EVOL COMPUTAT, P1918
[6]  
Knowles JD, 2001, LECT NOTES COMPUT SC, V1993, P269
[7]  
Krause A, 2014, TRACTABILITY, P71
[8]   ANALYSIS OF APPROXIMATIONS FOR MAXIMIZING SUBMODULAR SET FUNCTIONS .1. [J].
NEMHAUSER, GL ;
WOLSEY, LA ;
FISHER, ML .
MATHEMATICAL PROGRAMMING, 1978, 14 (03) :265-294
[9]   Optimising Monotone Chance-Constrained Submodular Functions Using Evolutionary Multi-objective Algorithms [J].
Neumann, Aneta ;
Neumann, Frank .
PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XVI, PT I, 2020, 12269 :404-417
[10]  
Neumann F., 2023, P ECAI 2023 26 EUR C, V372, P1771