Reduction of unitary operators, quantum graphs and quantum channels

被引:0
作者
Salcedo, L. L. [1 ,2 ]
机构
[1] Univ Granada, Dept Fis Atom Mol & Nucl, E-18071 Granada, Spain
[2] Univ Granada, Inst Carlos Fis Teor & Computac 1, E-18071 Granada, Spain
关键词
contractions; quantum channel; unitary operator; quantum graphs;
D O I
10.1088/1751-8121/ada2c8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Given a unitary operator in a finite dimensional complex vector space, its unitary reduction to a subspace is defined. The application to quantum graphs is discussed. It is shown how the reduction allows to generate the scattering matrices of new quantum graphs from assembling of simpler graphs. The reduction of quantum channels is also defined. The implementation of the quantum gates corresponding to the reduced unitary operator is investigated, although no explicit construction is presented. The situation is different for the reduction of quantum channels for which explicit implementations are given.
引用
收藏
页数:33
相关论文
共 47 条
  • [1] HOW THE RESULT OF A MEASUREMENT OF A COMPONENT OF THE SPIN OF A SPIN-1/2 PARTICLE CAN TURN OUT TO BE 100
    AHARONOV, Y
    ALBERT, DZ
    VAIDMAN, L
    [J]. PHYSICAL REVIEW LETTERS, 1988, 60 (14) : 1351 - 1354
  • [2] Quantum circuits cannot control unknown operations
    Araujo, Mateus
    Feix, Adrien
    Costa, Fabio
    Brukner, Caslav
    [J]. NEW JOURNAL OF PHYSICS, 2014, 16
  • [3] On random unitary channels
    Audenaert, Koenraad M. R.
    Scheel, Stefan
    [J]. NEW JOURNAL OF PHYSICS, 2008, 10
  • [4] UNITARY EQUIVALENCE - A NEW TWIST ON SIGNAL-PROCESSING
    BARANIUK, RG
    JONES, DL
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1995, 43 (10) : 2269 - 2282
  • [5] On the level spacing distribution in quantum graphs
    Barra, F
    Gaspard, P
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2000, 101 (1-2) : 283 - 319
  • [6] Barut A.O., 1986, THEORY GROUP REPRESE, Vsecond
  • [7] On Eisenbud's and Wigner's R-matrix:: A general approach
    Behrndt, Jussi
    Neidhardt, Hagen
    Racec, Elena R.
    Racec, Paul N.
    Wulf, Ulrich
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 244 (10) : 2545 - 2577
  • [8] Berkolaiko G., 2013, INTRO QUANTUM GRAPHS, V186, DOI [10.1090/surv/186, DOI 10.1090/SURV/186]
  • [9] Berkolaiko G, 2006, CONTEMP MATH, V415, P35
  • [10] Bhattacharyya SP, 2009, AUTOM CONTROL ENG SE, V33, pXVII