Layered deposition of porous composite electrodes for high-performance solid-state batteries at ambient temperatures

被引:0
作者
Leung, P. [1 ,2 ]
Tang, L. [1 ]
Mohamed, M. R. [3 ]
Xu, Q. [4 ]
Shah, A. A. [1 ]
Wei, L. [5 ]
Liao, Q. [1 ]
机构
[1] Chongqing Univ, Key Lab Low Grade Energy Utilizat Technol & Syst, MOE, Chongqing 400044, Peoples R China
[2] Chongqing Univ, Natl Innovat Ctr Ind Educ Integrat Energy Storage, Chongqing 400044, Peoples R China
[3] Univ Malaysia Pahang, Fac Elect & Elect Engn, Sustainable Energy & Power Elect Res Grp, Pekan 26600, Pahang, Malaysia
[4] Jiangsu Univ, Inst Energy Res, 301 Xuefu Rd, Zhenjiang 212013, Peoples R China
[5] Southern Univ Sci & Technol, Dept Mech & Energy Engn, Shenzhen Key Lab Adv Energy Storage, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Layered deposition; Porous electrodes; Polymer electrolyte; POLYMER ELECTROLYTES; LITHIUM-ION; GEL POLYMER; CONDUCTIVITY; LIFEPO4; GENERATION; INTERFACES; LIQUIDS; BINDER;
D O I
10.1016/j.jpowsour.2025.236831
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, a novel approach for fabricating solid-state lithium batteries (SSLBs) is introduced, employing atomized layered deposition technology to construct porous composite electrodes that enhance battery performances at room temperatures (22-30 degrees C). Utilizing a polymeric ionic liquid (PIL)-based polymer as both binder and electrolyte, this research marks a significant advancement in SSLB development by combining improved ionic conductivity (>10(-4) S cm(-1)) with substantial mechanical properties, crucial for the proper functioning of solid-state lithium batteries in ambient conditions. The methodology leverages a mixture of solvents in the layered deposition process to create electrodes with unique porous architectures, thereby facilitating electrolyte infiltration and more efficient battery reactions. Central to this process are the three electrode architectures: a conventional electrode with a polyvinylidene fluoride (PVDF) binder, an electrode incorporating a solid-state electrolyte (SSE) composite and notably, a porous SSE composite electrode. These configurations undergo experimental and model evaluations to investigate ion transport mechanisms and the influence of the proposed electrode structures on optimizing battery performance. The porous SSE composite electrode, fabricated via atomized layered deposition, demonstrates exceptional discharge capacities up to ca. 74 mA h g(-1) at 1C and 22 degrees C.
引用
收藏
页数:11
相关论文
共 63 条
  • [1] Pyrrolidium- and Imidazolium-Based Ionic Liquids and Electrolytes with Flexible Oligoether Anions
    Ahmed, Mukhtiar
    Filippov, Andrei
    Johansson, Patrik
    Shah, Faiz Ullah
    [J]. CHEMPHYSCHEM, 2024, 25 (09)
  • [2] Progress in Solid Polymer Electrolytes for Lithium-Ion Batteries and Beyond
    An, Yong
    Han, Xue
    Liu, Yuyang
    Azhar, Alowasheeir
    Na, Jongbeom
    Nanjundan, Ashok Kumar
    Wang, Shengping
    Yu, Jingxian
    Yamauchi, Yusuke
    [J]. SMALL, 2022, 18 (03)
  • [3] Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications
    Argyrou, Maria C.
    Christodoulides, Paul
    Kalogirou, Soteris A.
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 94 : 804 - 821
  • [4] Polymer effect on lithium ion dynamics in gel polymer electrolytes: Cationic versus acrylate polymer
    Bhandary, Rajesh
    Schoenhoff, Monika
    [J]. ELECTROCHIMICA ACTA, 2015, 174 : 753 - 761
  • [5] Co-spray printing of LiFePO4 and PEO-Li1.5Al0.5Ge1.5(PO4)3 hybrid electrodes for all-solid-state Li-ion battery applications
    Bu, Junfu
    Leung, Puiki
    Huang, Chun
    Lee, Sang Ho
    Grant, Patrick S.
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (32) : 19094 - 19103
  • [6] Screen-Printing Technology for Scale Manufacturing of Perovskite Solar Cells
    Chen, Changshun
    Ran, Chenxin
    Yao, Qing
    Wang, Jinpei
    Guo, Chunyu
    Gu, Lei
    Han, Huchen
    Wang, Xiaobo
    Chao, Lingfeng
    Xia, Yingdong
    Chen, Yonghua
    [J]. ADVANCED SCIENCE, 2023, 10 (28)
  • [7] Research progress and application prospect of solid-state electrolytes in commercial lithium-ion power batteries
    Chen, Jing
    Wu, Jiawei
    Wang, Xiaodong
    Zhou, An'an
    Yang, Zhenglong
    [J]. ENERGY STORAGE MATERIALS, 2021, 35 (35) : 70 - 87
  • [8] Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application
    Chen, Shaojie
    Xie, Dongjiu
    Liu, Gaozhan
    Mwizerwa, Jean Pierre
    Zhang, Qiang
    Zhao, Yanran
    Xu, Xiaoxiong
    Yao, Xiayin
    [J]. ENERGY STORAGE MATERIALS, 2018, 14 : 58 - 74
  • [9] A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards
    Chen, Yuqing
    Kang, Yuqiong
    Zhao, Yun
    Wang, Li
    Liu, Jilei
    Li, Yanxi
    Liang, Zheng
    He, Xiangming
    Li, Xing
    Tavajohi, Naser
    Li, Baohua
    [J]. JOURNAL OF ENERGY CHEMISTRY, 2021, 59 : 83 - 99
  • [10] Poly(diallyldimethylammonium) based poly(ionic liquid) di- and triblock copolymers by PISA as matrices for ionogel membranes
    Demarteau, Jeremy
    Fernandez de Anastro, Asier
    Shaplov, Alexander S. S.
    Mecerreyes, David
    [J]. POLYMER CHEMISTRY, 2020, 11 (08) : 1481 - 1488