Identification of key antifibrotic targets FPR1, TAS2R5, and LRP2BP of valsartan in diabetic nephropathy: A transcriptomics-driven study integrating machine learning, molecular docking, and dynamics simulations

被引:0
作者
Wang, Zewen [1 ]
Yuan, Anlei [1 ]
Liu, Chaoqun [1 ]
Liu, Yanxia [1 ]
Qiao, Liansheng [1 ]
Xu, Zhenzhen [1 ]
Bi, Shijie [1 ]
Tian, Jiaye [1 ]
Yu, Bin [1 ]
Lin, Zhaozhou [1 ,2 ]
Du, Jing [2 ]
Zhang, Yanling [1 ]
机构
[1] Beijing Univ Chinese Med, Sch Chinese Mat Med, Key Lab TCM, Informat Engineer State Adm TCM, Beijing 102488, Peoples R China
[2] Beijing Tong Ren Tang Technol Dev Co Ltd, Beijing 100079, Peoples R China
基金
中国国家自然科学基金;
关键词
Valsartan; Diabetic nephropathy; Antifibrotic targets; Machine learning; Transcriptomics analyses; TUBULOINTERSTITIAL FIBROSIS; INJURY; INFLAMMATION; DIAGNOSIS; SELECTION; RECEPTOR;
D O I
10.1016/j.ijbiomac.2025.139842
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Diabetic nephropathy (DN) is a major complication of diabetes and a leading cause of renal failure. While valsartan has been shown to alleviate DN clinically, its antifibrotic mechanisms require further investigation. This study used a transcriptomics-driven approach, integrating in vitro, Machine Learning, molecular docking, dynamics simulations and RT-qCPR to identify key antifibrotic targets. In vitro experiments demonstrated that valsartan combats fibrosis by reversing the mRNA expression levels of fibrosis markers. PCA, t-SNE and UMAP analyses suggest the effectiveness of valsartan in modifying gene expression patterns related to fibrosis. Differential expression analysis identified key fibrosis-related genes, while WGCNA highlighted DN-associated genes in human kidney samples, with 33 potential antifibrotic targets emerging from their intersection. To enhance the accuracy of key targets selection, multiple Machine Learning algorithms-LASSO, SVM-RFE, and XGBoost-were employed, refining the potential antifibrotic targets. Molecular docking and dynamics simulations confirmed strong interactions between valsartan and targets, with RT-qPCR validating their expression reversal. GSEA indicated involvement in RAS, AGE-RAGE, TGF-beta, and PI3K-Akt pathways, affecting oxidative phosphorylation and mitochondrial regulation. These findings provide insight into therapeutic mechanisms of valsartan and demonstrate the potential of transcriptomics-driven approaches in developing targeted DN treatments.
引用
收藏
页数:14
相关论文
共 51 条
[1]   Valsartan More Than a Decade of Experience [J].
Black, Henry R. ;
Bailey, Jacqueline ;
Zappe, Dion ;
Samuel, Rita .
DRUGS, 2009, 69 (17) :2393-2414
[2]   Participation of the SMAD2/3 signalling pathway in the down regulation of megalin/LRP2 by transforming growth factor beta (TGF-ss1) [J].
Cabezas, Felipe ;
Farfan, Pamela ;
Marzolo, Maria-Paz .
PLOS ONE, 2019, 14 (05)
[3]   Sodium-glucose cotransporter 2 inhibition suppresses HIF-1α-mediated metabolic switch from lipid oxidation to glycolysis in kidney tubule cells of diabetic mice [J].
Cai, Ting ;
Ke, Qingqing ;
Fang, Yi ;
Wen, Ping ;
Chen, Hanzhi ;
Yuan, Qi ;
Luo, Jing ;
Zhang, Yu ;
Sun, Qi ;
Lv, Yunhui ;
Zen, Ke ;
Jiang, Lei ;
Zhou, Yang ;
Yang, Junwei .
CELL DEATH & DISEASE, 2020, 11 (05)
[4]   Sacubitril/valsartan in heart failure with reduced ejection fraction patients: Real world experience on advanced chronic kidney disease, hypotension, and dose escalation [J].
Chang, Hung-Yu ;
Feng, An-Ning ;
Fong, Man-Cai ;
Hsueh, Chao-Wen ;
Lai, Wei-Tsung ;
Huang, Kuan-Chih ;
Chong, Eric ;
Chen, Chi-Nan ;
Chang, Hung-Chuan ;
Yin, Wei-Hsian .
JOURNAL OF CARDIOLOGY, 2019, 74 (3-4) :372-380
[5]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[6]   Loganin and catalpol exert cooperative ameliorating effects on podocyte apoptosis upon diabetic nephropathy by targeting AGEs-RAGE signaling [J].
Chen, Yuping ;
Chen, Jing ;
Jiang, Ming ;
Fu, Yingxue ;
Zhu, Yihui ;
Jiao, Ni ;
Liu, Liping ;
Du, Qiu ;
Wu, Hongyan ;
Xu, Huiqin ;
Sun, Jihu .
LIFE SCIENCES, 2020, 252
[7]   The pathogenesis of diabetic nephropathy [J].
Dronavalli, Suma ;
Duka, Irena ;
Bakris, George L. .
NATURE CLINICAL PRACTICE ENDOCRINOLOGY & METABOLISM, 2008, 4 (08) :444-452
[8]   Mitochondrial metabolic reprogramming in diabetic kidney disease [J].
Fan, Xiaoting ;
Yang, Meilin ;
Lang, Yating ;
Lu, Shangwei ;
Kong, Zhijuan ;
Gao, Ying ;
Shen, Ning ;
Zhang, Dongdong ;
Lv, Zhimei .
CELL DEATH & DISEASE, 2024, 15 (06)
[9]   Diabetic nephropathy: Diagnosis, prevention, and treatment [J].
Gross, JL ;
de Azevedo, MJ ;
Silveiro, SP ;
Canani, LH ;
Caramori, ML ;
Zelmanovitz, T .
DIABETES CARE, 2005, 28 (01) :164-176
[10]   Activation of TAS2R4 signaling attenuates podocyte injury induced by high glucose [J].
Gu, Yan-Ping ;
Wang, Jiang-Meng ;
Tian, Sai ;
Gu, Pan-Pan ;
Duan, Jing-Yu ;
Gou, Ling-Shan ;
Liu, Yao-Wu .
BIOCHEMICAL PHARMACOLOGY, 2024, 226