K-polystability of the First Secant Varieties of Rational Normal Curves

被引:0
作者
Kim, In-Kyun [1 ]
Park, Jinhyung [2 ]
Won, Joonyeong [3 ]
机构
[1] KIAS, June E Huh Ctr Math Challenges, 85 Hoegiro Dongdaemun Gu, Seoul 02455, South Korea
[2] Korea Adv Inst Sci & Technol, Dept Math Sci, 291 Daehak-ro, Daejeon 34141, South Korea
[3] Ewha Womans Univ, Dept Math, 52 Ewhayeodae gil, Seoul 03760, South Korea
基金
新加坡国家研究基金会;
关键词
KAHLER-EINSTEIN METRICS; FANO VARIETIES; SYZYGY CONJECTURE; STABILITY;
D O I
10.1093/imrn/rnaf088
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The first secant variety $\Sigma $ of a rational normal curve of degree $d \geq 3$ is known to be a $\textbf{Q}$-Fano threefold. In this paper, we prove that $\Sigma $ is K-polystable, and hence, $\Sigma $ admits a weak K & auml;hler-Einstein metric. We also show that there exists a $(-K_{\Sigma })$-polar cylinder in $\Sigma $.
引用
收藏
页数:17
相关论文
共 47 条
  • [1] Aprodu M., Farkas G., Papadima S., Raicu C., Weyman J., Koszul modules and Green’s conjecture, Invent. Math, 218, pp. 657-720, (2019)
  • [2] Araujo C., Castravet A.-M., Cheltsov I., Fujita K., Kaloghiros A.-S., Martinez-Garcia J., Shramov C., Suss H., Viswanathan N., The Calabi problem for Fano threefolds, Lond. Math. Soc. Lecture Note Ser, 485, (2023)
  • [3] Berman R. J., K-polystability of Q-Fano varieties admitting Kähler–Einstein metrics, Invent. Math, 203, pp. 973-1025, (2016)
  • [4] Blum H., Jonsson M., Thresholds, valuations, and K-stability, Adv. Math, 365, (2020)
  • [5] Blum H., Xu C., Uniqueness of K-polystable degenerations of Fano varieties, Ann. of Math, 190, 2, pp. 609-656, (2019)
  • [6] Cheltsov I., Park J., Prokhorov Y., Zaidenberg M., Cylinders in Fano varieties, EMS Surv. Math. Sci, 8, pp. 39-105, (2021)
  • [7] Cheltsov I., Park J., Won J., Affine cones over smooth cubic surfaces, J. Eur. Math. Soc. (JEMS), 18, pp. 1537-1564, (2016)
  • [8] Cheltsov I., Park J., Won J., Cylinders in del Pezzo surfaces, Int. Math. Res. Notices 1179–1230, (2017)
  • [9] Cheltsov I., Shramov C., Kähler–Einstein Fano threefolds of degree 22, J. Algebraic Geom, 32, pp. 385-428, (2023)
  • [10] Chen X., Donaldson S., Sun S., Kähler–Einstein metrics on Fano manifolds. Part I: approximation of metrics with cone singularities, J. Amer. Math. Soc, 28, pp. 183-197, (2015)