Eddeep: Fast Eddy-Current Distortion Correction for Diffusion MRI with Deep Learning

被引:0
作者
Legouhy, Antoine [1 ,2 ,3 ]
Callaghan, Ross [3 ]
Stee, Whitney [4 ,5 ,6 ]
Peigneux, Philippe [4 ,5 ,6 ]
Azadbakht, Hojjat [3 ]
Zhang, Hui [1 ,2 ]
机构
[1] UCL, Ctr Med Image Comp, London, England
[2] UCL, Dept Comp Sci, London, England
[3] AINOSTICS Ltd, Manchester, Lancs, England
[4] Univ Libre Bruxelles ULB, CRCN Ctr Res Cognit & Neurosci, UR2NF Neuropsychol & Funct Neuroimaging Res Unit, Brussels, Belgium
[5] Univ Libre Bruxelles ULB, UNI ULB Neurosci Inst, Brussels, Belgium
[6] Univ Liege ULiege, GIGA Cyclotron Res Ctr In Vivo Imaging, Liege, Belgium
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT II | 2024年 / 15002卷
基金
英国医学研究理事会; “创新英国”项目;
关键词
Diffusion MRI; Distortion correction; Eddy-currents; FRAMEWORK; ARTIFACTS;
D O I
10.1007/978-3-031-72069-7_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Modern diffusion MRI sequences commonly acquire a large number of volumes with diffusion sensitization gradients of differing strengths or directions. Such sequences rely on echo-planar imaging (EPI) to achieve reasonable scan duration. However, EPI is vulnerable to off-resonance effects, leading to tissue susceptibility and eddy-current induced distortions. The latter is particularly problematic because it causes misalignment between volumes, disrupting downstream modelling and analysis. The essential correction of eddy distortions is typically done post-acquisition, with image registration. However, this is non-trivial because correspondence between volumes can be severely disrupted due to volume-specific signal attenuations induced by varying directions and strengths of the applied gradients. This challenge has been successfully addressed by the popular FSL Eddy tool but at considerable computational cost. We propose an alternative approach, leveraging recent advances in image processing enabled by deep learning (DL). It consists of two convolutional neural networks: 1) An image translator to restore correspondence between images; 2) A registration model to align the translated images. Results demonstrate comparable distortion estimates to FSL Eddy, while requiring only modest training sample sizes. This work, to the best of our knowledge, is the first to tackle this problem with deep learning. Together with recently developed DL-based susceptibility correction techniques, they pave the way for real-time preprocessing of diffusion MRI, facilitating its wider uptake in the clinic.
引用
收藏
页码:152 / 161
页数:10
相关论文
共 50 条
  • [41] Eddy current correction in diffusion-weighted imaging using pairs of images acquired with opposite diffusion gradient polarity
    Bodammer, N
    Kaufmann, J
    Kanowski, M
    Tempelmann, C
    MAGNETIC RESONANCE IN MEDICINE, 2004, 51 (01) : 188 - 193
  • [42] K-space correction of eddy-current-induced distortions in diffusion-weighted echo-planar imaging
    Papadakis, NG
    Smponias, T
    Berwick, J
    Mayhew, JEW
    MAGNETIC RESONANCE IN MEDICINE, 2005, 53 (05) : 1103 - 1111
  • [43] Eddy Currents Artifacts Correction in Diffusion-Weighted Echo-Planar Imaging for Permanent MRI Scanner
    Wang Y.-F.
    Yang J.-Z.
    Kang Y.
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2020, 41 (07): : 1048 - 1053
  • [44] Thalamus Segmentation Using Deep Learning with Diffusion MRI Data: An Open Benchmark
    Pinheiro, Gustavo Retuci
    Brusini, Lorenza
    Carmo, Diedre
    Proa, Renata
    Abreu, Thays
    Appenzeller, Simone
    Menegaz, Gloria
    Rittner, Leticia
    APPLIED SCIENCES-BASEL, 2023, 13 (09):
  • [45] Atlas-Powered Deep Learning (ADL) - Application to Diffusion Weighted MRI
    Karimi, Davood
    Gholipour, Ali
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT I, 2022, 13431 : 123 - 132
  • [46] Validation of deep learning techniques for quality augmentation in diffusion MRI for clinical studies
    Aja-Fernandez, Santiago
    Martin-Martin, Carmen
    Planchuelo-Gomez, Alvaro
    Faiyaz, Abrar
    Uddin, Md Nasir
    Schifitto, Giovanni
    Tiwari, Abhishek
    Shigwan, Saurabh J.
    Singh, Rajeev Kumar
    Zheng, Tianshu
    Cao, Zuozhen
    Wu, Dan
    Blumberg, Stefano B.
    Sen, Snigdha
    Goodwin-Allcock, Tobias
    Slator, Paddy J.
    Avci, Mehmet Yigit
    Li, Zihan
    Bilgic, Berkin
    Tian, Qiyuan
    Wang, Xinyi
    Tang, Zihao
    Cabezas, Mariano
    Rauland, Amelie
    Merhof, Dorit
    Maria, Renata Manzano
    Campos, Vinicius Paraniba
    Santini, Tales
    Vieira, Marcelo Andrade da Costa
    Hashemizadehkolowri, Seyyedkazem
    Dibella, Edward
    Peng, Chenxu
    Shen, Zhimin
    Chen, Zan
    Ullah, Irfan
    Mani, Merry
    Abdolmotalleby, Hesam
    Eckstrom, Samuel
    Baete, Steven H.
    Filipiak, Patryk
    Dong, Tanxin
    Fan, Qiuyun
    de Luis-Garcia, Rodrigo
    Tristan-Vega, Antonio
    Pieciak, Tomasz
    NEUROIMAGE-CLINICAL, 2023, 39
  • [47] Uncertainty modelling in deep learning for safer neuroimage enhancement: Demonstration in diffusion MRI
    Tanno, Ryutaro
    Worrall, Daniel E.
    Kaden, Enrico
    Ghosh, Aurobrata
    Grussu, Francesco
    Bizzi, Alberto
    Sotiropoulos, Stamatios N.
    Criminisi, Antonio
    Alexander, Daniel C.
    NEUROIMAGE, 2021, 225
  • [48] Correction of eddy current-induced artefacts in diffusion tensor imaging using iterative cross-correlation
    Bastin, ME
    MAGNETIC RESONANCE IMAGING, 1999, 17 (07) : 1011 - 1024
  • [49] Motion Correction for Brain MRI Using Deep Learning and a Novel Hybrid Loss Function
    Zhang, Lei
    Wang, Xiaoke
    Rawson, Michael
    Balan, Radu
    Herskovits, Edward H.
    Melhem, Elias R.
    Chang, Linda
    Wang, Ze
    Ernst, Thomas
    ALGORITHMS, 2024, 17 (05)
  • [50] Improving distortion correction for isotropic high-resolution 3D diffusion MRI by optimizing Jacobian modulation
    Liu, Simin
    Xiong, Yuhui
    Dai, Erpeng
    Zhang, Jieying
    Guo, Hua
    MAGNETIC RESONANCE IN MEDICINE, 2021, 86 (05) : 2780 - 2794