Eddeep: Fast Eddy-Current Distortion Correction for Diffusion MRI with Deep Learning

被引:0
作者
Legouhy, Antoine [1 ,2 ,3 ]
Callaghan, Ross [3 ]
Stee, Whitney [4 ,5 ,6 ]
Peigneux, Philippe [4 ,5 ,6 ]
Azadbakht, Hojjat [3 ]
Zhang, Hui [1 ,2 ]
机构
[1] UCL, Ctr Med Image Comp, London, England
[2] UCL, Dept Comp Sci, London, England
[3] AINOSTICS Ltd, Manchester, Lancs, England
[4] Univ Libre Bruxelles ULB, CRCN Ctr Res Cognit & Neurosci, UR2NF Neuropsychol & Funct Neuroimaging Res Unit, Brussels, Belgium
[5] Univ Libre Bruxelles ULB, UNI ULB Neurosci Inst, Brussels, Belgium
[6] Univ Liege ULiege, GIGA Cyclotron Res Ctr In Vivo Imaging, Liege, Belgium
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT II | 2024年 / 15002卷
基金
英国医学研究理事会; “创新英国”项目;
关键词
Diffusion MRI; Distortion correction; Eddy-currents; FRAMEWORK; ARTIFACTS;
D O I
10.1007/978-3-031-72069-7_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Modern diffusion MRI sequences commonly acquire a large number of volumes with diffusion sensitization gradients of differing strengths or directions. Such sequences rely on echo-planar imaging (EPI) to achieve reasonable scan duration. However, EPI is vulnerable to off-resonance effects, leading to tissue susceptibility and eddy-current induced distortions. The latter is particularly problematic because it causes misalignment between volumes, disrupting downstream modelling and analysis. The essential correction of eddy distortions is typically done post-acquisition, with image registration. However, this is non-trivial because correspondence between volumes can be severely disrupted due to volume-specific signal attenuations induced by varying directions and strengths of the applied gradients. This challenge has been successfully addressed by the popular FSL Eddy tool but at considerable computational cost. We propose an alternative approach, leveraging recent advances in image processing enabled by deep learning (DL). It consists of two convolutional neural networks: 1) An image translator to restore correspondence between images; 2) A registration model to align the translated images. Results demonstrate comparable distortion estimates to FSL Eddy, while requiring only modest training sample sizes. This work, to the best of our knowledge, is the first to tackle this problem with deep learning. Together with recently developed DL-based susceptibility correction techniques, they pave the way for real-time preprocessing of diffusion MRI, facilitating its wider uptake in the clinic.
引用
收藏
页码:152 / 161
页数:10
相关论文
共 50 条
  • [31] Deep Learning for Retrospective Motion Correction in MRI: A Comprehensive Review
    Spieker, Veronika
    Eichhorn, Hannah
    Hammernik, Kerstin
    Rueckert, Daniel
    Preibisch, Christine
    Karampinos, Dimitrios C.
    Schnabel, Julia A.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2024, 43 (02) : 846 - 859
  • [32] Distortion correction of single-shot EPI enabled by deep-learning
    Hu, Zhangxuan
    Wang, Yishi
    Zhang, Zhe
    Zhang, Jieying
    Zhang, Huimao
    Guo, Chunjie
    Sun, Yuejiao
    Guo, Hua
    NEUROIMAGE, 2020, 221
  • [33] Simultaneous Motion and Distortion Correction Using Dual-Echo Diffusion-Weighted MRI
    Afacan, Onur
    Hoge, W. Scott
    Wallace, Tess E.
    Gholipour, Ali
    Kurugol, Sila
    Warfield, Simon K.
    JOURNAL OF NEUROIMAGING, 2020, 30 (03) : 276 - 285
  • [34] ReUINet: A fast GNL distortion correction approach on a 1.0 T MRI-Linac scanner
    Shan, Shanshan
    Li, Mao
    Li, Mingyan
    Tang, Fangfang
    Crozier, Stuart
    Liu, Feng
    MEDICAL PHYSICS, 2021, 48 (06) : 2991 - 3002
  • [35] SIMULATION-BASED EVALUATION OF SUSCEPTIBILITY DISTORTION CORRECTION METHODS IN DIFFUSION MRI FOR CONNECTIVITY ANALYSIS
    Esteban, Oscar
    Daducci, Alessandro
    Caruyer, Emmanuel
    O'Brien, Kieran
    Ledesma-Carbayo, Maria J.
    Bach-Cuadra, Meritxell
    Santos, Andres
    2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), 2014, : 738 - 741
  • [36] Uniform treatment of different conductor types in two-dimensional eddy-current problems applied to a fast ferrite tuner
    Kurz, S
    Fetzer, J
    Lehner, G
    Rucker, WM
    IEEE TRANSACTIONS ON MAGNETICS, 1999, 35 (06) : 4459 - 4464
  • [37] Geometric distortion correction in prostate diffusion-weighted MRI and its effect on quantitative apparent diffusion coefficient analysis
    Nketiah, Gabriel
    Selnaes, Kirsten M.
    Sandsmark, Elise
    Teruel, Jose R.
    Kruger-Stokke, Brage
    Bertilsson, Helena
    Bathen, Tone F.
    Elschot, Mattijs
    MAGNETIC RESONANCE IN MEDICINE, 2018, 79 (05) : 2524 - 2532
  • [38] DDParcel: Deep Learning Anatomical Brain Parcellation From Diffusion MRI
    Zhang, Fan
    Cho, Kang Ik Kevin
    Seitz-Holland, Johanna
    Ning, Lipeng
    Legarreta, Jon Haitz
    Rathi, Yogesh
    Westin, Carl-Fredrik
    O'Donnell, Lauren J.
    Pasternak, Ofer
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2024, 43 (03) : 1191 - 1202
  • [39] A deep learning approach to multi-fiber parameter estimation and uncertainty quantification in diffusion MRI
    Consagra, William
    Ning, Lipeng
    Rathi, Yogesh
    MEDICAL IMAGE ANALYSIS, 2025, 102
  • [40] Eddy current-induced artifact correction in high b-value ex vivo human brain diffusion MRI with dynamic field monitoring
    Ramos-Llorden, Gabriel
    Park, Daniel J.
    Kirsch, John E.
    Scholz, Alina
    Keil, Boris
    Maffei, Chiara
    Lee, Hong-Hsi
    Bilgic, Berkin
    Edlow, Brian L.
    Mekkaoui, Choukri
    Yendiki, Anastasia
    Witzel, Thomas
    Huang, Susie Y.
    MAGNETIC RESONANCE IN MEDICINE, 2024, 91 (02) : 541 - 557