Artificial Intelligence for Response Assessment in Neuro Oncology (AI-RANO), part 1: review of current advancements

被引:2
|
作者
Villanueva-Meyer, Javier E. [1 ,2 ]
Bakas, Spyridon [3 ,4 ,5 ,6 ,7 ,8 ]
Tiwari, Pallavi [9 ]
Lupo, Janine M. [1 ]
Calabrese, Evan [10 ]
Davatzikos, Christos [11 ,12 ,13 ]
Bi, Wenya Linda [14 ]
Ismail, Marwa [9 ]
Akbari, Hamed [13 ,34 ]
Lohmann, Philipp [18 ]
Booth, Thomas C. [19 ,20 ,21 ]
Wiestler, Benedikt [22 ]
Aerts, Hugo J. W. L. [16 ,35 ,36 ]
Rasool, Ghulam [31 ]
Tonn, Joerg C. [23 ,24 ]
Nowosielski, Martha [25 ]
Jain, Rajan [26 ,27 ]
Colen, Rivka R. [35 ,36 ]
Pati, Sarthak [3 ]
Baid, Ujjwal [3 ]
Vollmuth, Philipp [28 ]
Macdonald, David [29 ]
Vogelbaum, Michael A. [30 ,31 ]
Chang, Susan M. [2 ]
Huang, Raymond Y. [15 ]
Galldiks, Norbert [17 ,32 ,33 ]
机构
[1] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, Dept Neurol Surg, San Francisco, CA USA
[3] Indiana Univ Sch Med, Div Computat Pathol, Dept Pathol & Lab Med, Indianapolis, IN USA
[4] Indiana Univ Sch Med, Sch Med, Dept Radiol & Imaging Sci, Indianapolis, IN USA
[5] Indiana Univ Sch Med, Dept Biostat & Hlth Data Sci, Indianapolis, IN USA
[6] Dept Neurol SurgeryIndiana Univ Sch Med, Indianapolis, IN USA
[7] Indiana Univ, Melvin & Bren Simon Comprehens Canc Ctr, Indianapolis, IN USA
[8] Indiana Univ, Luddy Sch Informat Comp & Engn, Dept Comp Sci, Indianapolis, IN USA
[9] Univ Wisconsin, Dept Radiol & Biomed Engn, Madison, WI USA
[10] Duke Univ, Ctr Artificial Intelligence Radiol, Dept Radiol, Durham, NC USA
[11] Univ Penn, Ctr Artificial Intelligence & Data Sci Integrated, Philadelphia, PA USA
[12] Univ Penn, Ctr Biomed Image Comp & Analyt Analyt CBICA, Philadelphia, PA USA
[13] Univ Penn, Dept Radiol, Perelman Sch Med, Philadelphia, PA USA
[14] Harvard Med Sch, Brigham & Womens Hosp, Dana Farber Canc Inst, Dept Neurosurg, Boston, MA USA
[15] Harvard Med Sch, Brigham & Womens Hosp, Dana Farber Canc Inst, Dept Radiol, Boston, MA USA
[16] Harvard Med Sch, Artificial Intelligence Med AIM Program, Mass Gen Brigham, Boston, MA USA
[17] Res Ctr Juelich FZJ, Inst Neurosci & Med INM 4, Julich, Germany
[18] Univ Hosp RWTH Aachen, Dept Nucl Med, Aachen, Germany
[19] Kings Coll Hosp NHS Fdn Trust, Dept Neuroradiol, London, England
[20] Kings Coll London, Sch Biomed Engn & Imaging Sci, London, England
[21] London Reg Canc Program, London, England
[22] Tech Univ Munich, Univ Hosp, Dept Neuroradiol, Munich, Germany
[23] Ludwig Maximilians Univ Munchen, Dept Neurosurg, Partner Site Munich, Munich, Germany
[24] German Canc Consortium DKTK, Partner Site Munich, Munich, Germany
[25] Med Univ Innsbruck, Dept Neurol, Innsbruck, Austria
[26] New York Univ Langone Hlth, Dept Radiol, New York, NY USA
[27] New York Univ Langone Hlth, Dept Neurosurg, New York, NY USA
[28] Heidelberg Univ Hosp, Dept Neuroradiol, Heidelberg, Germany
[29] H Lee Moffitt Canc Ctr & Res Inst, Dept Neurooncol, Tampa, FL USA
[30] H Lee Moffitt Canc Ctr & Res Inst, Dept Neurosurg, Tampa, FL USA
[31] H Lee Moffitt Canc Ctr & Res Inst, Dept Machine Learning, Tampa, FL USA
[32] Fac Med, Dept Neurol, Cologne, Germany
[33] Univ Hosp Cologne, Cologne, Germany
[34] Santa Clara Univ, Dept Bioengn, Santa Clara, CA USA
[35] Maastricht Univ, Radiol & Nucl Med, CARIM, Maastricht, Netherlands
[36] Maastricht Univ, GROW, Maastricht, Netherlands
来源
LANCET ONCOLOGY | 2024年 / 25卷 / 11期
关键词
HIGH-GRADE GLIOMAS; MRI; GLIOBLASTOMA; FEATURES; RADIOMICS; MUTATIONS; CLASSIFICATION; SIGNATURE; SURVIVAL; NETWORK;
D O I
10.1016/S1470-2045(24)00316-4
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The development, application, and benchmarking of artificial intelligence (AI) tools to improve diagnosis, prognostication, and therapy in neuro-oncology are increasing at a rapid pace. This Policy Review provides an overview and critical assessment of the work to date in this field, focusing on diagnostic AI models of key genomic markers, predictive AI models of response before and after therapy, and differentiation of true disease progression from treatment-related changes, which is a considerable challenge based on current clinical care in neuro-oncology. Furthermore, promising future directions, including the use of AI for automated response assessment in neuro-oncology, are discussed.
引用
收藏
页码:e581 / e588
页数:8
相关论文
共 50 条
  • [41] Working plan for the use of patient-reported outcome measures in adults with brain tumours: a Response Assessment in Neuro-Oncology (RANO) initiative
    Dirven, Linda
    Armstrong, Terri S.
    Blakeley, Jaishri O.
    Brown, Paul D.
    Grant, Robin
    Jalali, Rakesh
    Leeper, Heather
    Mendoza, Tito
    Nayak, Lakshmi
    Reijneveld, Jaap C.
    Le Rhun, Emilie
    Walbert, Tobias
    Weller, Michael
    Wen, Patrick Y.
    Taphoorn, Martin J. B.
    LANCET ONCOLOGY, 2018, 19 (03): : E173 - E180
  • [42] Review of imaging recommendations from Response Assessment in Pediatric Neuro-Oncology (RAPNO)
    Bhatia, Aashim
    Sabin, Noah D.
    Fisher, Michael J.
    Poussaint, Tina Young
    PEDIATRIC RADIOLOGY, 2023, 53 (13) : 2723 - 2741
  • [43] Review of imaging recommendations from Response Assessment in Pediatric Neuro-Oncology (RAPNO)
    Aashim Bhatia
    Noah D. Sabin
    Michael J. Fisher
    Tina Young Poussaint
    Pediatric Radiology, 2023, 53 : 2723 - 2741
  • [44] Artificial intelligence in radiation oncology: A review of its current status and potential application for the radiotherapy workforce
    Parkinson, C.
    Matthams, C.
    Foley, K.
    Spezi, E.
    RADIOGRAPHY, 2021, 27 (S1) : S63 - S68
  • [46] Advancements in Water Desalination Through Artificial Intelligence: a Comprehensive Review of AI-Based Methods for Reverse Osmosis Membrane Processes
    Habieeb, A. R.
    Kabeel, Abd Elnaby
    Sultan, G. I.
    Abdelsalam, Mohamed M.
    WATER CONSERVATION SCIENCE AND ENGINEERING, 2023, 8 (01)
  • [47] Advancements in Water Desalination Through Artificial Intelligence: a Comprehensive Review of AI-Based Methods for Reverse Osmosis Membrane Processes
    A.R. Habieeb
    Abd Elnaby Kabeel
    G.I. Sultan
    Mohamed M. Abdelsalam
    Water Conservation Science and Engineering, 2023, 8
  • [48] Artificial Intelligence in Pharmacoepidemiology: A Systematic Review. Part 1-Overview of Knowledge Discovery Techniques in Artificial Intelligence
    Sessa, Maurizio
    Khan, Abdul Rauf
    Liang, David
    Andersen, Morten
    Kulahci, Murat
    FRONTIERS IN PHARMACOLOGY, 2020, 11
  • [49] Population description and clinical response assessment for spinal metastases: part 2 of the SPIne response assessment in Neuro-Oncology (SPINO) group report
    Laufer, Ilya
    Lo, Simon S.
    Chang, Eric L.
    Sheehan, Jason
    Guckenberger, Matthias
    Sohn, Moon-Jun
    Ryu, Samuel
    Foote, Matthew
    Muacevic, Alexander
    Soltys, Scott G.
    Chao, Samuel
    Myrehaug, Sten
    Gerszten, Peter C.
    Lis, Eric
    Maralani, Pejman
    Bilsky, Mark
    Fisher, Charles
    Rhines, Laurence
    Verlaan, Jorrit-Jan
    Schiff, David
    Fehlings, Michael G.
    Ma, Lijun
    Chang, Susan
    Parulekar, Wendy R.
    Vogelbaum, Michael A.
    Sahgal, Arjun
    NEURO-ONCOLOGY, 2018, 20 (09) : 1215 - 1224
  • [50] A review of the Artificial Intelligence (AI) based techniques for estimating reference evapotranspiration: Current trends and future perspectives
    Goyal, Pooja
    Kumar, Sunil
    Sharda, Rakesh
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 209