Artificial Intelligence for Response Assessment in Neuro Oncology (AI-RANO), part 1: review of current advancements

被引:2
|
作者
Villanueva-Meyer, Javier E. [1 ,2 ]
Bakas, Spyridon [3 ,4 ,5 ,6 ,7 ,8 ]
Tiwari, Pallavi [9 ]
Lupo, Janine M. [1 ]
Calabrese, Evan [10 ]
Davatzikos, Christos [11 ,12 ,13 ]
Bi, Wenya Linda [14 ]
Ismail, Marwa [9 ]
Akbari, Hamed [13 ,34 ]
Lohmann, Philipp [18 ]
Booth, Thomas C. [19 ,20 ,21 ]
Wiestler, Benedikt [22 ]
Aerts, Hugo J. W. L. [16 ,35 ,36 ]
Rasool, Ghulam [31 ]
Tonn, Joerg C. [23 ,24 ]
Nowosielski, Martha [25 ]
Jain, Rajan [26 ,27 ]
Colen, Rivka R. [35 ,36 ]
Pati, Sarthak [3 ]
Baid, Ujjwal [3 ]
Vollmuth, Philipp [28 ]
Macdonald, David [29 ]
Vogelbaum, Michael A. [30 ,31 ]
Chang, Susan M. [2 ]
Huang, Raymond Y. [15 ]
Galldiks, Norbert [17 ,32 ,33 ]
机构
[1] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, Dept Neurol Surg, San Francisco, CA USA
[3] Indiana Univ Sch Med, Div Computat Pathol, Dept Pathol & Lab Med, Indianapolis, IN USA
[4] Indiana Univ Sch Med, Sch Med, Dept Radiol & Imaging Sci, Indianapolis, IN USA
[5] Indiana Univ Sch Med, Dept Biostat & Hlth Data Sci, Indianapolis, IN USA
[6] Dept Neurol SurgeryIndiana Univ Sch Med, Indianapolis, IN USA
[7] Indiana Univ, Melvin & Bren Simon Comprehens Canc Ctr, Indianapolis, IN USA
[8] Indiana Univ, Luddy Sch Informat Comp & Engn, Dept Comp Sci, Indianapolis, IN USA
[9] Univ Wisconsin, Dept Radiol & Biomed Engn, Madison, WI USA
[10] Duke Univ, Ctr Artificial Intelligence Radiol, Dept Radiol, Durham, NC USA
[11] Univ Penn, Ctr Artificial Intelligence & Data Sci Integrated, Philadelphia, PA USA
[12] Univ Penn, Ctr Biomed Image Comp & Analyt Analyt CBICA, Philadelphia, PA USA
[13] Univ Penn, Dept Radiol, Perelman Sch Med, Philadelphia, PA USA
[14] Harvard Med Sch, Brigham & Womens Hosp, Dana Farber Canc Inst, Dept Neurosurg, Boston, MA USA
[15] Harvard Med Sch, Brigham & Womens Hosp, Dana Farber Canc Inst, Dept Radiol, Boston, MA USA
[16] Harvard Med Sch, Artificial Intelligence Med AIM Program, Mass Gen Brigham, Boston, MA USA
[17] Res Ctr Juelich FZJ, Inst Neurosci & Med INM 4, Julich, Germany
[18] Univ Hosp RWTH Aachen, Dept Nucl Med, Aachen, Germany
[19] Kings Coll Hosp NHS Fdn Trust, Dept Neuroradiol, London, England
[20] Kings Coll London, Sch Biomed Engn & Imaging Sci, London, England
[21] London Reg Canc Program, London, England
[22] Tech Univ Munich, Univ Hosp, Dept Neuroradiol, Munich, Germany
[23] Ludwig Maximilians Univ Munchen, Dept Neurosurg, Partner Site Munich, Munich, Germany
[24] German Canc Consortium DKTK, Partner Site Munich, Munich, Germany
[25] Med Univ Innsbruck, Dept Neurol, Innsbruck, Austria
[26] New York Univ Langone Hlth, Dept Radiol, New York, NY USA
[27] New York Univ Langone Hlth, Dept Neurosurg, New York, NY USA
[28] Heidelberg Univ Hosp, Dept Neuroradiol, Heidelberg, Germany
[29] H Lee Moffitt Canc Ctr & Res Inst, Dept Neurooncol, Tampa, FL USA
[30] H Lee Moffitt Canc Ctr & Res Inst, Dept Neurosurg, Tampa, FL USA
[31] H Lee Moffitt Canc Ctr & Res Inst, Dept Machine Learning, Tampa, FL USA
[32] Fac Med, Dept Neurol, Cologne, Germany
[33] Univ Hosp Cologne, Cologne, Germany
[34] Santa Clara Univ, Dept Bioengn, Santa Clara, CA USA
[35] Maastricht Univ, Radiol & Nucl Med, CARIM, Maastricht, Netherlands
[36] Maastricht Univ, GROW, Maastricht, Netherlands
来源
LANCET ONCOLOGY | 2024年 / 25卷 / 11期
关键词
HIGH-GRADE GLIOMAS; MRI; GLIOBLASTOMA; FEATURES; RADIOMICS; MUTATIONS; CLASSIFICATION; SIGNATURE; SURVIVAL; NETWORK;
D O I
10.1016/S1470-2045(24)00316-4
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The development, application, and benchmarking of artificial intelligence (AI) tools to improve diagnosis, prognostication, and therapy in neuro-oncology are increasing at a rapid pace. This Policy Review provides an overview and critical assessment of the work to date in this field, focusing on diagnostic AI models of key genomic markers, predictive AI models of response before and after therapy, and differentiation of true disease progression from treatment-related changes, which is a considerable challenge based on current clinical care in neuro-oncology. Furthermore, promising future directions, including the use of AI for automated response assessment in neuro-oncology, are discussed.
引用
收藏
页码:e581 / e588
页数:8
相关论文
共 50 条
  • [1] Artificial Intelligence for Response Assessment in Neuro Oncology (AI-RANO), part 2: recommendations for standardisation, validation, and good clinical practice
    Bakas, Spyridon
    Vollmuth, Philipp
    Galldiks, Norbert
    Booth, Thomas C.
    Aerts, Hugo J. W. L.
    Bi, Wenya Linda
    Wiestler, Benedikt
    Tiwari, Pallavi
    Pati, Sarthak
    Baid, Ujjwal
    Calabrese, Evan
    Lohmann, Philipp
    Nowosielski, Martha
    Jain, Rajan
    Colen, Rivka
    Ismail, Marwa
    Rasool, Ghulam
    Lupo, Janine M.
    Akbari, Hamed
    Tonn, Joerg C.
    Macdonald, David
    Vogelbaum, Michael
    Chang, Susan M.
    Davatzikos, Christos
    Villanueva-Meyer, Javier E.
    Huang, Raymond Y.
    LANCET ONCOLOGY, 2024, 25 (11): : e589 - e601
  • [2] Updated Response Assessment in Neuro-Oncology (RANO) for Gliomas
    Youssef, Gilbert
    Wen, Patrick Y.
    CURRENT NEUROLOGY AND NEUROSCIENCE REPORTS, 2024, 24 (02) : 17 - 25
  • [3] Updated Response Assessment in Neuro-Oncology (RANO) for Gliomas
    Gilbert Youssef
    Patrick Y. Wen
    Current Neurology and Neuroscience Reports, 2024, 24 : 17 - 25
  • [4] RESPONSE ASSESSMENT IN NEURO-ONCOLOGY (RANO) CRITERIA FOR BRAIN METASTASES
    Wen, P. Y.
    Lee, E. Q.
    Van den Bent, M.
    Soffieti, R.
    Bendszus, M.
    Mehta, M.
    Baumert, B.
    Vogelbaum, M.
    Chang, S. M.
    Lin, N. U.
    NEURO-ONCOLOGY, 2014, 16
  • [5] Advancements in Oncology with Artificial Intelligence-A Review Article
    Vobugari, Nikitha
    Raja, Vikranth
    Sethi, Udhav
    Gandhi, Kejal
    Raja, Kishore
    Surani, Salim R.
    CANCERS, 2022, 14 (05)
  • [6] Summary of Key Points of the Response Assessment in Neuro-Oncology (RANO) 2.0
    Won, Sang Eun
    Suh, Chong Hyun
    Kim, Sinae
    Park, Hyo Jung
    Kim, Kyung Won
    KOREAN JOURNAL OF RADIOLOGY, 2024, 25 (05) : 407 - 411
  • [7] Immunotherapy response assessment in neuro-oncology: a report of the RANO working group
    Okada, Hideho
    Weller, Michael
    Huang, Raymond
    Finocchiaro, Gaetano
    Gilbert, Mark R.
    Wick, Wolfgang
    Ellingson, Benjamin M.
    Hashimoto, Naoya
    Pollack, Ian F.
    Brandes, Alba A.
    Franceschi, Enrico
    Herold-Mende, Christel
    Nayak, Lakshmi
    Panigrahy, Ashok
    Pope, Whitney B.
    Prins, Robert
    Sampson, John H.
    Wen, Patrick Y.
    Reardon, David A.
    LANCET ONCOLOGY, 2015, 16 (15): : E534 - E542
  • [8] The Neurologic Assessment in Neuro-Oncology (NANO) scale: a tool to assess neurologic function for integration into the Response Assessment in Neuro-Oncology (RANO) criteria
    Nayak, Lakshmi
    DeAngelis, Lisa M.
    Brandes, Alba A.
    Peereboom, David M.
    Galanis, Evanthia
    Lin, Nancy U.
    Soffietti, Riccardo
    Macdonald, David R.
    Chamberlain, Marc
    Perry, James
    Jaeckle, Kurt
    Mehta, Minesh
    Stupp, Roger
    Muzikansky, Alona
    Pentsova, Elena
    Cloughesy, Timothy
    Iwamoto, Fabio M.
    Tonn, Joerg-Christian
    Vogelbaum, Michael A.
    Wen, Patrick Y.
    van den Bent, Martin J.
    Reardon, David A.
    NEURO-ONCOLOGY, 2017, 19 (05) : 625 - 635
  • [9] Response Assessment in Neuro-Oncology (RANO): more than imaging criteria for malignant glioma
    Chang, Susan M.
    Wen, Patrick Y.
    Vogelbaum, Michael A.
    Macdonald, David R.
    van den Bent, Martin J.
    NEURO-ONCOLOGY PRACTICE, 2015, 2 (04) : 205 - 209
  • [10] A review of current advancements and limitations of artificial intelligence in genitourinary cancers
    Pai, Raghav K.
    Van Booven, Derek J.
    Parmar, Madhumita
    Lokeshwar, Soum D.
    Shah, Khushi
    Ramasamy, Ranjith
    Arora, Himanshu
    AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY, 2020, 8 (05): : 152 - 162