Part-Level Relationship Learning for Fine-Grained Few-Shot Image Classification

被引:0
|
作者
Wang, Chuanming [1 ]
Fu, Huiyuan [1 ]
Liu, Peiye [1 ]
Ma, Huadong [1 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China
关键词
Measurement; Feature extraction; Image classification; Extraterrestrial measurements; Few shot learning; Prototypes; Neural networks; Metalearning; Image color analysis; Hands; Fine-grained image classification; few-shot learning; metric learning; part-level; relationship learning; NETWORK;
D O I
10.1109/TMM.2024.3521792
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, an increasing number of few-shot image classification methods have been proposed, and they aim at seeking a learning paradigm to train a high-performance classification model with limited labeled samples. However, the neglect of part-level relationships causes few-shot methods to struggle to distinguish between closely similar subcategories, which makes it difficult for them to solve the fine-grained image classification problem. To tackle this challenging task, this paper proposes a fine-grained few-shot image classification method that exploits both intra-part and inter-part relationships among different samples. To establish comprehensive relationships, we first extract multiple discriminative descriptors from the input image, representing its different parts. Then, we propose to define the metric spaces by interpolating intra-part relationships, which can help the model adaptively find clear boundaries for these confusing classes. Finally, since the unlabeled image has high similarities to all classes, we project these similarities into a high-dimension space according to the inter-part relationship and interpolate a parameterized classifier to discover the subtle differences among these similar classes. To evaluate our proposed method, we conduct extensive experiments on various fine-grained datasets. Without any pre-train/fine-tuning process, our approach clearly outperforms previous few-shot learning methods, which demonstrates the effectiveness of our approach.
引用
收藏
页码:1448 / 1460
页数:13
相关论文
共 50 条
  • [1] PaCL: Part-level Contrastive Learning for Fine-grained Few-shot Image Classification
    Wang, Chuanming
    Fu, Huiyuan
    Ma, Huadong
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 6416 - 6424
  • [2] Few-Shot Learning for Domain-Specific Fine-Grained Image Classification
    Sun, Xin
    Xv, Hongwei
    Dong, Junyu
    Zhou, Huiyu
    Chen, Changrui
    Li, Qiong
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (04) : 3588 - 3598
  • [3] Few-Shot Fine-Grained Image Classification via GNN
    Zhou, Xiangyu
    Zhang, Yuhui
    Wei, Qianru
    SENSORS, 2022, 22 (19)
  • [4] Few-Shot Fine-Grained Image Classification: A Comprehensive Review
    Ren, Jie
    Li, Changmiao
    An, Yaohui
    Zhang, Weichuan
    Sun, Changming
    AI, 2024, 5 (01) : 405 - 425
  • [5] Power Normalizations in Fine-Grained Image, Few-Shot Image and Graph Classification
    Koniusz, Piotr
    Zhang, Hongguang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (02) : 591 - 609
  • [6] KNOWLEDGE-BASED FINE-GRAINED CLASSIFICATION FOR FEW-SHOT LEARNING
    Zhao, Jiabao
    Lin, Xin
    Zhou, Jie
    Yang, Jing
    He, Liang
    Yang, Zhaohui
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,
  • [7] A Multiview Metric Learning Method for Few-Shot Fine-Grained Classification
    Miao, Zhuang
    Zhao, Xun
    Wang, Jiabao
    Xu, Bo
    Li, Yang
    Li, Hang
    IEEE ACCESS, 2022, 10 : 52782 - 52790
  • [8] A few-shot fine-grained image recognition method
    Wang, Jianwei
    Chen, Deyun
    BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2023, 71 (01)
  • [9] Learning relations in human-like style for few-shot fine-grained image classification
    Shenming Li
    Lin Feng
    Linsong Xue
    Yifan Wang
    Dong Wang
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 377 - 385
  • [10] Task-specific Part Discovery for Fine-grained Few-shot Classification
    Wei, Yongxian
    Wei, Xiu-Shen
    MACHINE INTELLIGENCE RESEARCH, 2024, 21 (05) : 954 - 965