Enhancing Intelligent Control Strategies for UAVs: A Comparative Analysis of Fuzzy Logic, Fuzzy PID, and GA-Optimized Fuzzy PID Controllers

被引:1
|
作者
Madebo, Nigatu Wanore [1 ]
机构
[1] INSA, Addis Ababa 124498, Ethiopia
来源
IEEE ACCESS | 2025年 / 13卷
关键词
Quadrotors; Autonomous aerial vehicles; Genetic algorithms; Intelligent control; Fuzzy logic; Robustness; Vehicle dynamics; Uncertainty; Trajectory; Optimization; FPID; GAFPID; fuzzy; unmanned aerial vehicle (UAV); DESIGN;
D O I
10.1109/ACCESS.2025.3532743
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents advanced control strategies to enhance the stability and trajectory tracking performance of quadrotor systems. The study investigates three control methodologies: the Fuzzy Logic Controller (Fuzzy), the Fuzzy Proportional-Integral-Derivative (FPID) controller, and the Genetic Algorithm (GA)-optimized Fuzzy PID controller (GAFPID). The Fuzzy controller leverages heuristic rules for adaptive control, while the FPID controller integrates conventional PID dynamics with fuzzy logic to improve precision and robustness. The GAFPID controller employs evolutionary computation through a genetic algorithm to optimize parameter tuning, offering superior control performance. Comparative simulations are conducted under diverse operating conditions, including external disturbances and parameter variation scenarios, with performance evaluated using the Integral of Time-weighted Absolute Error (ITAE) metric. Results demonstrate that the GAFPID controller outperforms the other approaches in terms of precision, adaptability, and robustness, establishing it as a promising solution for complex quadrotor applications.
引用
收藏
页码:16548 / 16563
页数:16
相关论文
共 50 条
  • [31] GA-optimized inverse fuzzy model control of OWC wave power plants
    Silva, Jorge Marques
    Vieira, Susana M.
    Valerio, Duarte
    Henriques, Joao C. C.
    RENEWABLE ENERGY, 2023, 204 : 556 - 568
  • [32] Simple Fuzzy PID Controllers for DC-DC Converters
    Seo, K. -W.
    Choi, Han Ho
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2012, 7 (05) : 724 - 729
  • [33] An Intelligent Fuzzy PID Controller for a Reconfigurable Machine Tool
    Ndzabukelwayo, Sibusiso M.
    Mpofu, Khumbulani
    Tlale, Nkgatho
    THIRD INTERNATIONAL CONFERENCE ON INFORMATION SECURITY AND INTELLIGENT CONTROL (ISIC 2012), 2012, : 99 - 102
  • [34] Experimental verification and comparison of fuzzy and PID controllers for attitude control of nanosatellites
    Bello, A.
    Olfe, K. S.
    Rodriguez, J.
    Ezquerro, J. M.
    Lapuerta, V.
    ADVANCES IN SPACE RESEARCH, 2023, 71 (09) : 3613 - 3630
  • [35] Comparative Study of PID, DMC, and Fuzzy PD plus I Controllers in a Control Laboratory Kit
    Ardila, Diego Paez
    Martinez Reyes, Diana
    Valencia Nino, Cesar
    Tanscheit, Ricardo
    Vellasco, Marley
    2022 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2022, : 136 - 141
  • [36] A multivariable predictive fuzzy PID control system
    Savran, Aydogan
    APPLIED SOFT COMPUTING, 2013, 13 (05) : 2658 - 2667
  • [37] Design and Analysis of PID and Fuzzy Logic Controller for Simulation Performance
    Pan, Tien-Szu
    Lin, Song-Yih
    JOURNAL OF INTERNET TECHNOLOGY, 2021, 22 (01): : 31 - 39
  • [38] Control of a distillation column by type-2 and type-1 fuzzy logic PID controllers
    Miccio, Michele
    Cosenza, Bartolomeo
    JOURNAL OF PROCESS CONTROL, 2014, 24 (05) : 475 - 484
  • [39] Fuzzy and PID controllers applied to ball and plate system
    Robayo Betancourt, Faiber I.
    Brand Alarcon, Samuel M.
    Aristizabal Velasquez, Luisa F.
    2019 IEEE 4TH COLOMBIAN CONFERENCE ON AUTOMATIC CONTROL (CCAC): AUTOMATIC CONTROL AS KEY SUPPORT OF INDUSTRIAL PRODUCTIVITY, 2019,
  • [40] A Comparative Velocity Control Study of Permanent Magnet Tubular Linear DC Motor by Using PID and Fuzzy-PID Controllers
    Guney, Ezgi
    Demir, Memnun
    2017 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND DIAGNOSIS (ICCAD), 2017, : 390 - 395