Arboreal Galois groups for cubic polynomials with colliding critical points

被引:0
作者
Benedetto, Robert L. [1 ]
Degroot, William [2 ]
Ni, Xinyu [1 ]
Seid, Jesse [1 ]
Wei, Annie [3 ]
Winton, Samantha [4 ]
机构
[1] Amherst Coll, Amherst, MA 01002 USA
[2] Dartmouth Coll, Hanover, NH 03755 USA
[3] Rutgers State Univ, New Brunswick, NJ 08901 USA
[4] Univ Illinois, Chicago, IL 60607 USA
基金
美国国家科学基金会;
关键词
Arithmetic dynamics; Arboreal Galois groups; ODONIS CONJECTURE; REPRESENTATIONS;
D O I
10.1016/j.jnt.2025.01.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a field, and let f is an element of K(z) be a rational function of degree d >= 2. The Galois group of the field extension generated by the preimages of x(0 )is an element of K under all iterates of f naturally embeds in the automorphism group of an infinite d-ary rooted tree. In some cases the Galois group can be the full automorphism group of the tree, but in other cases it is known to have infinite index. In this paper, we consider a previously unstudied such case: that f is a polynomial of degree d = 3, and the two finite critical points of f collide at the l-th iteration, for some l >= 2. We describe an explicit subgroup Q(l,infinity )of automorphisms of the 3-ary tree in which the resulting Galois group must always embed, and we present sufficient conditions for this embedding to be an isomorphism. (c) 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:72 / 103
页数:32
相关论文
共 35 条
  • [1] The arithmetic basilica: A quadratic PCF arboreal Galois group
    Ahmad, Faseeh
    Benedetto, Robert L.
    Cain, Jennifer
    Carroll, Gregory
    Fang, Lily
    [J]. JOURNAL OF NUMBER THEORY, 2022, 238 : 842 - 868
  • [2] Aitken W, 2005, INT MATH RES NOTICES, V2005, P855
  • [3] Arboreal Galois groups for quadratic rational functions with colliding critical points
    Benedetto, Robert L.
    Dietrich, Anna
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2024, 308 (01)
  • [4] Benedetto RL, 2023, Arxiv, DOI arXiv:2309.00840
  • [5] Odoni's conjecture for number fields
    Benedetto, Robert L.
    Juul, Jamie
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2019, 51 (02) : 237 - 250
  • [6] A large arboreal Galois representation for a cubic postcritically finite polynomial
    Benedetto R.L.
    Faber X.
    Hutz B.
    Juul J.
    Yasufuku Y.
    [J]. Research in Number Theory, 3 (1)
  • [7] Benedetto Robert L., 2009, Involve, V2, P37
  • [8] Arboreal Galois representations
    Boston, Nigel
    Jones, Rafe
    [J]. GEOMETRIAE DEDICATA, 2007, 124 (01) : 27 - 35
  • [9] Dynamical Belyi maps and arboreal Galois groups
    Bouw, Irene I.
    Ejder, Ozlem
    Karemaker, Valentijn
    [J]. MANUSCRIPTA MATHEMATICA, 2021, 165 (1-2) : 1 - 34
  • [10] FINITE INDEX THEOREMS FOR ITERATED GALOIS GROUPS OF UNICRITICAL POLYNOMIALS
    Bridy, Andrew
    Doyle, John R.
    Ghioca, Dragos
    Hsia, Liang-Chung
    Tucker, Thomas J.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (01) : 733 - 752