Examination of the topological equivalence of some dynamical systems on the Box fractal

被引:0
作者
Aslan, Nisa [1 ]
机构
[1] Eskisehir Tech Univ, Dept Math, TR-26470 Eskisehir, Turkiye
关键词
Chaotic dynamical systems; periodic points; topological equivalence; Box fractal;
D O I
10.2298/FIL2416779A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we examine dynamical systems obtained with the same expanding and different numbers of folding transformations on the Box fractal (B). B ). We express these dynamical systems through the addresses of points by using the terms of { 0, 1, 2, 3, 4}. We then compute and compare the periodic points of the dynamical systems. Finally, we examine these systems in the sense of topological equivalence and we investigate the chaos conditions for the dynamical systems.
引用
收藏
页码:5779 / 5793
页数:15
相关论文
共 18 条
  • [1] ASLAN N., 2018, Journal of Abstract and Computational Mathematics, V3, P1
  • [2] Aslan N, 2021, Res Math, V29, P3
  • [3] A family of chaotic dynamical systems on the Cantor dust C x C
    Aslan, Nisa
    Koparal, Fatma Digdem
    Saltan, Mustafa
    Ozdemir, Yunus
    Demir, Bunyamin
    [J]. FILOMAT, 2023, 37 (06) : 1915 - 1925
  • [4] Approximation to the classical fractals by using non-affine contraction mappings
    Aslan, Nisa
    Aslan, Ismail
    [J]. PORTUGALIAE MATHEMATICA, 2022, 79 (1-2) : 45 - 60
  • [5] On Topological Conjugacy of Some Chaotic Dynamical Systems on the Sierpinski Gasket
    Aslan, Nisa
    Saltan, Mustafa
    Demir, Bunyamin
    [J]. FILOMAT, 2021, 35 (07) : 2317 - 2331
  • [6] The intrinsic metric formula and a chaotic dynamical system on the code set of the Sierpinski tetrahedron
    Aslan, Nisa
    Saltan, Mustafa
    Demir, Bunyamin
    [J]. CHAOS SOLITONS & FRACTALS, 2019, 123 : 422 - 428
  • [7] ON DEVANEY DEFINITION OF CHAOS
    BANKS, J
    BROOKS, J
    CAIRNS, G
    DAVIS, G
    STACEY, P
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1992, 99 (04) : 332 - 334
  • [8] SMALE HORSESHOE MAP VIA TERNARY NUMBERS
    BANKS, J
    DRAGAN, V
    [J]. SIAM REVIEW, 1994, 36 (02) : 265 - 271
  • [9] Barnsley M. F., 2014, Fractals Everywhere
  • [10] Barnsley M.F., 2006, SUPERFRACTALS