THE WEIGHTED CONFORMAL MEAN CURVATURE FLOW

被引:0
|
作者
Ho, Pak tung [1 ]
Shin, Jinwoo [2 ]
Yan, Zetian [3 ]
机构
[1] Tamkang Univ, Dept Math, New Taipei City 251301, Taiwan
[2] Sookmyung Womens Univ, Dept Math, Seoul 04310, South Korea
[3] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
关键词
Key veords and phrases. Yamabe flow; manifolds with boundary; smooth metric measure space; YAMABE FLOW; CONVERGENCE; MANIFOLDS; DEFORMATION; EQUATIONS;
D O I
10.3934/dcds.2024171
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a Yamabe-type flow ( partial derivative g R m partial derivative t =2( h m phi - H phi m ) g phi = 0 in M and partial derivative phi partial derivative t = m ( H phi m - h m phi ) on partial derivative M on a smooth metric measure space with boundary ( M, g, e - phi dV g , e - phi dA g , m ), where R m phi is the weighted scalar curvature, H phi m is the weighted mean curvature and h m phi is the average of the weighted mean curvature. We prove the long-time existence and convergence of this flow.
引用
收藏
页码:2446 / 2470
页数:25
相关论文
共 50 条
  • [41] REMARKS ON MEAN CURVATURE FLOW SOLITONS IN WARPED PRODUCTS
    Colombo, Giulio
    Mari, Luciano
    Rigoli, Marco
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (07): : 1957 - 1991
  • [42] A posteriori error analysis for the mean curvature flow of graphs
    Lakkis, O
    Nochetto, RH
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 42 (05) : 1875 - 1898
  • [43] Mean curvature flow by the Allen-Cahn equation
    Lee, D. S.
    Kim, J. S.
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2015, 26 : 535 - 559
  • [44] An area minimizing scheme for anisotropic mean curvature flow
    Eto, Tokuhiro
    Giga, Yoshikazu
    Ishii, Katsuyuki
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2012, 88 (01) : 7 - 10
  • [45] Head and Tail Speeds of Mean Curvature Flow with Forcing
    Gao, Hongwei
    Kim, Inwon
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 235 (01) : 287 - 354
  • [46] THE EXTENSION AND CONVERGENCE OF MEAN CURVATURE FLOW IN HIGHER CODIMENSION
    Liu, Kefeng
    Xu, Hongwei
    Ye, Fei
    Zhao, Entao
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (03) : 2231 - 2262
  • [47] A LEVEL SET CRYSTALLINE MEAN CURVATURE FLOW OF SURFACES
    Giga, Yoshikazu
    Pozar, Norbert
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2016, 21 (7-8) : 631 - 698
  • [48] Two-phase flow problem coupled with mean curvature flow
    Liu, Chun
    Sato, Norifumi
    Tonegawa, Yoshihiro
    INTERFACES AND FREE BOUNDARIES, 2012, 14 (02) : 185 - 203
  • [49] EXISTENCE OF WEAK SOLUTION FOR MEAN CURVATURE FLOW WITH TRANSPORT TERM AND FORCING TERM
    Takasao, Keisuke
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (05) : 2655 - 2677
  • [50] Symmetric mean curvature flow on the n-sphere
    Chen, Jingwen
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2024, 239