THE WEIGHTED CONFORMAL MEAN CURVATURE FLOW

被引:0
|
作者
Ho, Pak tung [1 ]
Shin, Jinwoo [2 ]
Yan, Zetian [3 ]
机构
[1] Tamkang Univ, Dept Math, New Taipei City 251301, Taiwan
[2] Sookmyung Womens Univ, Dept Math, Seoul 04310, South Korea
[3] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
关键词
Key veords and phrases. Yamabe flow; manifolds with boundary; smooth metric measure space; YAMABE FLOW; CONVERGENCE; MANIFOLDS; DEFORMATION; EQUATIONS;
D O I
10.3934/dcds.2024171
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a Yamabe-type flow ( partial derivative g R m partial derivative t =2( h m phi - H phi m ) g phi = 0 in M and partial derivative phi partial derivative t = m ( H phi m - h m phi ) on partial derivative M on a smooth metric measure space with boundary ( M, g, e - phi dV g , e - phi dA g , m ), where R m phi is the weighted scalar curvature, H phi m is the weighted mean curvature and h m phi is the average of the weighted mean curvature. We prove the long-time existence and convergence of this flow.
引用
收藏
页码:2446 / 2470
页数:25
相关论文
共 50 条
  • [21] Evolution of contractions by mean curvature flow
    Savas-Halilaj, Andreas
    Smoczyk, Knut
    MATHEMATISCHE ANNALEN, 2015, 361 (3-4) : 725 - 740
  • [22] Lorentzian Legendrian mean curvature flow
    Schaefer, Lars
    MATHEMATISCHE ZEITSCHRIFT, 2013, 274 (3-4) : 1093 - 1111
  • [23] Lagrangian mean curvature flow with boundary
    Evans, Christopher G.
    Lambert, Ben
    Wood, Albert
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (03)
  • [24] YAMABE FLOW WITH PRESCRIBED SCALAR CURVATURE
    Amacha, Inas
    Regbaoui, Rachid
    PACIFIC JOURNAL OF MATHEMATICS, 2018, 297 (02) : 257 - 275
  • [25] COMPLETE TRANSLATING SOLITONS TO THE MEAN CURVATURE FLOW IN R3 WITH NONNEGATIVE MEAN CURVATURE
    Spruck, Joel
    Xiao, Ling
    AMERICAN JOURNAL OF MATHEMATICS, 2020, 142 (03) : 993 - 1015
  • [26] Fractional mean curvature flow of Lipschitz graphs
    Cesaroni, Annalisa
    Novaga, Matteo
    MANUSCRIPTA MATHEMATICA, 2023, 170 (3-4) : 427 - 451
  • [27] Global Existence of a Mean Curvature Flow in a Cone
    Ai, Neng
    Lou, Bendong
    Song, Jiashu
    Yang, Pei
    Zhang, Xin
    JOURNAL OF MATHEMATICAL STUDY, 2024, 57 (03) : 278 - 293
  • [28] Hessian estimates for the Lagrangian mean curvature flow
    Bhattacharya, Arunima
    Wall, Jeremy
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (08)
  • [29] Graphical mean curvature flow with bounded bi-Ricci curvature
    Assimos, Renan
    Savas-Halilaj, Andreas
    Smoczyk, Knut
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (01)
  • [30] On the existence of mean curvature flow with transport term
    Liu, Chun
    Sato, Norifumi
    Tonegawa, Yoshihiro
    INTERFACES AND FREE BOUNDARIES, 2010, 12 (02) : 251 - 277