Artificial intelligence diagnosis of patent foramen ovale in contrast transthoracic echocardiography

被引:0
作者
Sheng, Yuanyuan [1 ]
Chen, Lixin [1 ]
Gu, Mengjie [2 ]
Luo, Shuyu [1 ]
Huang, Yuxiang [1 ]
Lin, Xiaoxuan [1 ]
Liu, Xiaohua [1 ]
Liu, Qian [1 ]
Zhong, Xiaofang [1 ]
Peng, Guijuan [1 ]
Li, Jian [1 ]
Shi, Bobo [1 ]
Wang, Lin [1 ,2 ]
Xu, Jinfeng [1 ]
Ning, Zhaohui [3 ]
Liu, Yingying [1 ]
机构
[1] Jinan Univ, Southern Univ Sci & Technol, Affiliated Hosp 1, Clin Med Coll 2,Shenzhen Peoples Hosp,Shenzhen Med, Shenzhen 518020, Peoples R China
[2] Henan Univ Sci & Technol, Sch Informat Engn, Luoyang 471023, Peoples R China
[3] Henan Univ Sci & Technol, Affiliated Hosp 1, Luoyang 471003, Peoples R China
基金
中国国家自然科学基金;
关键词
TRANSCATHETER CLOSURE; THERAPY;
D O I
10.1016/j.isci.2024.111012
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Artificial intelligence (AI) is rarely directly used in patent foramen ovale (PFO) diagnosis. In this study, an AI model was developed to detect the presence of PFO automatically in both contrast transthoracic echocardiography (cTTE) images and videos. The whole intelligent diagnosis neural network framework consists of two functional modules of image segmentation (Unet, n = 1866) and image classification (ResNet 101, n = 9152). Finally, another test databases, including 20 cTTE videos (4609 cTTE images), was used to compare the RLS classification model accuracy between AI model and different levels of physicians. The Dice similarity coefficient of left chamber segmentation model of cTTE images was 91.41%, the accuracy of PFO-RLS classification model of cTTE images was 83.55%, the accuracy of PFO-RLS classification model of cTTE videos was 90%. Besides, the AI diagnosis time was significantly shorter than doctors (at only 1.3 s).
引用
收藏
页数:14
相关论文
共 31 条
  • [1] Mitral Annulus Segmentation Using Deep Learning in 3-D Transesophageal Echocardiography
    Andreassen, Borge Solli
    Veronesi, Federico
    Gerard, Olivier
    Solberg, Anne H. Schistad
    Samset, Eigil
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (04) : 994 - 1003
  • [2] Effect of Residual Interatrial Shunt on Migraine Burden After Transcatheter Closure of Patent Foramen Ovale
    Ben-Assa, Eyal
    Rengifo-Moreno, Pablo
    Al-Bawardy, Rasha
    Kolte, Dhaval
    Cigarroa, Ricardo
    Cruz-Gonzalez, Ignacio
    Sakhuja, Rahul
    Elmariah, Sammy
    Pomerantsev, Eugene
    Vaina, Lucia M.
    Ning, MingMing
    Buonanno, Ferdinando S.
    Hung, Judy W.
    Inglessis, Ignacio
    Palacios, Igor F.
    [J]. JACC-CARDIOVASCULAR INTERVENTIONS, 2020, 13 (03) : 293 - 302
  • [3] Bradski G, 2000, DR DOBBS J, V25, P120
  • [4] Gu M.J., 2024, Code for PFO
  • [5] Array programming with NumPy
    Harris, Charles R.
    Millman, K. Jarrod
    van der Walt, Stefan J.
    Gommers, Ralf
    Virtanen, Pauli
    Cournapeau, David
    Wieser, Eric
    Taylor, Julian
    Berg, Sebastian
    Smith, Nathaniel J.
    Kern, Robert
    Picus, Matti
    Hoyer, Stephan
    van Kerkwijk, Marten H.
    Brett, Matthew
    Haldane, Allan
    del Rio, Jaime Fernandez
    Wiebe, Mark
    Peterson, Pearu
    Gerard-Marchant, Pierre
    Sheppard, Kevin
    Reddy, Tyler
    Weckesser, Warren
    Abbasi, Hameer
    Gohlke, Christoph
    Oliphant, Travis E.
    [J]. NATURE, 2020, 585 (7825) : 357 - 362
  • [6] Prostate cancer classification from ultrasound and MRI images using deep learning based Explainable Artificial Intelligence
    Hassan, Md Rafiul
    Islam, Md Fakrul
    Uddin, Md Zia
    Ghoshal, Goutam
    Hassan, Mohammad Mehedi
    Huda, Shamsul
    Fortino, Giancarlo
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2022, 127 : 462 - 472
  • [7] Screening and Risk Stratification Strategy Reduced Decompression Sickness Occurrence in Divers With Patent Foramen Ovale
    Honek, Jakub
    Sramek, Martin
    Honek, Tomas
    Tomek, Ales
    Sefc, Ludek
    Januska, Jaroslav
    Fiedler, Jiri
    Horvath, Martin
    Novotny, Stepan
    Brabec, Marek
    Veselka, Josef
    [J]. JACC-CARDIOVASCULAR IMAGING, 2022, 15 (02) : 181 - 189
  • [8] Automated Left Ventricular Dimension Assessment Using Artificial Intelligence Developed and Validated by a UK-Wide Collaborative
    Howard, James P.
    Stowell, Catherine C.
    Cole, Graham D.
    Ananthan, Kajaluxy
    Demetrescu, Camelia D.
    Pearce, Keith
    Rajani, Ronak
    Sehmi, Jobanpreet
    Vimalesvaran, Kavitha
    Kanaganayagam, G. Sunthar
    McPhail, Eleanor
    Ghosh, Arjun K.
    Chambers, John B.
    Singh, Amar P.
    Zolgharni, Massoud
    Rana, Bushra
    Francis, Darrel P.
    Shun-Shin, Matthew J.
    [J]. CIRCULATION-CARDIOVASCULAR IMAGING, 2021, 14 (05) : E011951
  • [9] Clinical and imaging findings in cryptogenic stroke patients with and without patent foramen ovale - The PFO-ASA study
    Lamy, C
    Giannesini, C
    Zuber, M
    Arquizan, C
    Meder, JF
    Trystram, D
    Coste, J
    Mas, JL
    [J]. STROKE, 2002, 33 (03) : 706 - 711
  • [10] Cryptogenic Stroke and High-Risk Patent Foramen Ovale The DEFENSE-PFO Trial
    Lee, Pil Hyung
    Song, Jae-Kwan
    Kim, Jong S.
    Heo, Ran
    Lee, Sahmin
    Kim, Dae-Hee
    Song, Jong-Min
    Kang, Duk-Hyun
    Kwon, Sun U.
    Kang, Dong-Wha
    Lee, Dongwhane
    Kwon, Hyuk Sung
    Yun, Sung-Cheol
    Sun, Byung Joo
    Park, Jae-Hyeong
    Lee, Jae-Hwan
    Jeong, Hye Seon
    Song, Hee-Jung
    Kim, Jei
    Park, Seung-Jung
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2018, 71 (20) : 2335 - 2342