On a Generic Fractional Derivative Associated with the Riemann-Liouville Fractional Integral

被引:2
|
作者
Luchko, Yuri [1 ]
机构
[1] Berlin Univ Appl Sci & Technol, Dept Math Phys & Chem, D-13353 Berlin, Germany
关键词
Riemann-Liouville fractional integral; left-inverse operator; projector operator; generalized fractional Taylor formula; fractional differential equations; complete monotonicity;
D O I
10.3390/axioms13090604
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a generic fractional derivative is defined as a set of the linear operators left-inverse to the Riemann-Liouville fractional integral. Then, the theory of the left-invertible operators developed by Przeworska-Rolewicz is applied to deduce its properties. In particular, we characterize its domain, null-space, and projector operator; establish the interrelations between its different realizations; and present a generalized fractional Taylor formula involving the generic fractional derivative. Then, we consider the fractional relaxation equation containing the generic fractional derivative, derive a closed-form formula for its unique solution, and study its complete monotonicity.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Fractional Ince equation with a Riemann-Liouville fractional derivative
    Parra-Hinojosa, Alfredo
    Gutierrez-Vega, Julio C.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (22) : 10695 - 10705
  • [2] Fractional Langevin equation and Riemann-Liouville fractional derivative
    Kwok Sau Fa
    The European Physical Journal E, 2007, 24 : 139 - 143
  • [3] Fractional langevin equation and riemann-liouville fractional derivative
    Fa, Kwok Sau
    EUROPEAN PHYSICAL JOURNAL E, 2007, 24 (02): : 139 - 143
  • [4] On Solutions of Fractional Integrodifferential Systems Involving ψ-Caputo Derivative and ψ-Riemann-Liouville Fractional Integral
    Boulares, Hamid
    Moumen, Abdelkader
    Fernane, Khaireddine
    Alzabut, Jehad
    Saber, Hicham
    Alraqad, Tariq
    Benaissa, Mhamed
    MATHEMATICS, 2023, 11 (06)
  • [5] Integral-Type Fractional Equations with a Proportional Riemann-Liouville Derivative
    Mlaiki, Nabil
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [6] A Fractional Boundary Value Problem with φ-Riemann-Liouville Fractional Derivative
    Ji, Dehong
    Yang, Yitao
    IAENG International Journal of Applied Mathematics, 2020, 50 (04) : 1 - 5
  • [7] Extension of the fractional derivative operator of the Riemann-Liouville
    Baleanu, Dumitru
    Agarwal, Praveen
    Parmar, Rakesh K.
    Alqurashi, Maysaa M.
    Salahshour, Soheil
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (06): : 2914 - 2924
  • [8] The Riemann-Liouville fractional derivative for Ambartsumian equation
    El-Zahar, E. R.
    Alotaibi, A. M.
    Ebaid, A.
    Aljohani, A. F.
    Gomez Aguilar, J. F.
    RESULTS IN PHYSICS, 2020, 19
  • [9] THE UNIFIED RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE FORMULAE
    Soni, R. C.
    Singh, Deepika
    TAMKANG JOURNAL OF MATHEMATICS, 2005, 36 (03): : 231 - 236
  • [10] The Riemann-Liouville fractional derivative for Ambartsumian equation
    El-Zahar, E. R.
    Alotaibi, A. M.
    Ebaid, A.
    Aljohani, A. F.
    Gomez Aguilar, J. F.
    RESULTS IN PHYSICS, 2020, 19