On a Generic Fractional Derivative Associated with the Riemann-Liouville Fractional Integral

被引:2
|
作者
Luchko, Yuri [1 ]
机构
[1] Berlin Univ Appl Sci & Technol, Dept Math Phys & Chem, D-13353 Berlin, Germany
关键词
Riemann-Liouville fractional integral; left-inverse operator; projector operator; generalized fractional Taylor formula; fractional differential equations; complete monotonicity;
D O I
10.3390/axioms13090604
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a generic fractional derivative is defined as a set of the linear operators left-inverse to the Riemann-Liouville fractional integral. Then, the theory of the left-invertible operators developed by Przeworska-Rolewicz is applied to deduce its properties. In particular, we characterize its domain, null-space, and projector operator; establish the interrelations between its different realizations; and present a generalized fractional Taylor formula involving the generic fractional derivative. Then, we consider the fractional relaxation equation containing the generic fractional derivative, derive a closed-form formula for its unique solution, and study its complete monotonicity.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] The Solutions of Some Riemann-Liouville Fractional Integral Equations
    Kaewnimit, Karuna
    Wannalookkhee, Fongchan
    Nonlaopon, Kamsing
    Orankitjaroen, Somsak
    FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [2] On right multidimensional Riemann-Liouville fractional integral
    Anastassiou, George
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 23 (02) : 377 - 387
  • [3] On left multidimensional Riemann-Liouville fractional integral
    Anastassiou, George
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 23 (02) : 239 - 248
  • [4] Dimension of Riemann-Liouville fractional integral of Takagi function
    Liu, Ning
    Yao, Kui
    Liang, Yong Shun
    PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC), 2018, : 2376 - 2380
  • [5] A NOTE ON FRACTAL DIMENSION OF RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL
    Chandra, Subhash
    Abbas, Syed
    Liang, Yongshun
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024, 32 (02)
  • [6] Solution set for fractional differential equations with Riemann-Liouville derivative
    Yurilev Chalco-Cano
    Juan J. Nieto
    Abdelghani Ouahab
    Heriberto Román-Flores
    Fractional Calculus and Applied Analysis, 2013, 16 : 682 - 694
  • [7] Solution set for fractional differential equations with Riemann-Liouville derivative
    Chalco-Cano, Yurilev
    Nieto, Juan J.
    Ouahab, Abdelghani
    Roman-Flores, Heriberto
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (03) : 682 - 694
  • [8] Some Riemann-Liouville fractional integral inequalities for convex functions
    Farid, Ghulam
    JOURNAL OF ANALYSIS, 2019, 27 (04) : 1095 - 1102
  • [9] On Some Generalized Integral Inequalities for Riemann-Liouville Fractional Integrals
    Sarikaya, Mehmet Zeki
    Filiz, Hatice
    Kiris, Mehmet Eyup
    FILOMAT, 2015, 29 (06) : 1307 - 1314
  • [10] The Riemann-Liouville fractional integral in Bochner-Lebesgue spaces III
    Carvalho-Neto, Paulo M.
    Fehlberg Junior, Renato
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 543 (02)