Stability and Zero-Hopf Bifurcation Analysis of the Lorenz-Stenflo System Using Symbolic Methods

被引:0
作者
Huang, Bo [1 ]
Li, Xiaoliang [2 ]
Niu, Wei [3 ,4 ]
Xie, Shaofen [5 ]
机构
[1] Beihang Univ, LMIB Sch Math Sci, Beijing 100191, Peoples R China
[2] Guangzhou Coll Technol & Business, Sch Business, Guangzhou 510850, Peoples R China
[3] Beihang Univ, Ecole Cent Pekin, Beijing 100191, Peoples R China
[4] Beihang Hangzhou Innovat Inst Yuhang, Hangzhou 310051, Peoples R China
[5] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
来源
COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, CASC 2023 | 2023年 / 14139卷
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Averaging method; Limit cycle; Symbolic computation; Stability; Zero-Hopf bifurcation; ATTRACTORS;
D O I
10.1007/978-3-031-41724-5_10
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper deals with the stability and zero-Hopf bifurcation of the Lorenz-Stenflo system by using methods of symbolic computation. Stability conditions on the parameters of the system are derived by using methods of solving semi-algebraic systems. Using the method of algorithmic averaging, we provide sufficient conditions for the existence of one limit cycle bifurcating from a zero-Hopf equilibrium of the Lorenz-Stenflo system. Some examples are presented to verify the established results.
引用
收藏
页码:183 / 198
页数:16
相关论文
共 34 条
[1]   Qualitative investigation of a gene model using computer algebra algorithms [J].
Boulier, F. ;
Han, M. ;
Lemaire, F. ;
Romanovski, V. G. .
PROGRAMMING AND COMPUTER SOFTWARE, 2015, 41 (02) :105-111
[2]   Finding First Integrals Using Normal Forms Modulo Differential Regular Chains [J].
Boulier, Francois ;
Lemaire, Francois .
COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING (CASC 2015), 2015, 9301 :101-118
[3]  
Buchberger B., 1985, GROBNER BASES ALGORI, P184
[4]   Averaging methods for finding periodic orbits via Brouwer degree [J].
Buica, A ;
Llibre, J .
BULLETIN DES SCIENCES MATHEMATIQUES, 2004, 128 (01) :7-22
[5]   AN APPLICATION OF REGULAR CHAIN THEORY TO THE STUDY OF LIMIT CYCLES [J].
Chen, Changbo ;
Corless, Robert M. ;
Maza, Marc Moreno ;
Yu, Pei ;
Zhang, Yiming .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (09)
[6]   Triangular decomposition of semi-algebraic systems [J].
Chen, Changbo ;
Davenport, James H. ;
May, John P. ;
Maza, Marc Moreno ;
Xia, Bican ;
Xiao, Rong .
JOURNAL OF SYMBOLIC COMPUTATION, 2013, 49 :3-26
[7]   Zero-zero-Hopf bifurcation and ultimate bound estimation of a generalized Lorenz-Stenflo hyperchaotic system [J].
Chen, Yu-Ming ;
Liang, Hai-Hua .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (10) :3424-3432
[8]   Zero-Hopf bifurcation in a hyperchaotic Lorenz system [J].
Cid-Montiel, Lorena ;
Llibre, Jaume ;
Stoica, Cristina .
NONLINEAR DYNAMICS, 2014, 75 (03) :561-566
[9]  
Guckenheimer J., 1983, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, DOI DOI 10.1007/978-1-4612-1140-2
[10]   Using Symbolic Computation to Analyze Zero-Hopf Bifurcations of Polynomial Differential Systems [J].
Huang, Bo .
PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON SYMBOLIC & ALGEBRAIC COMPUTATION, ISSAC 2023, 2023, :307-314