Extreme environment-resistant high performance triboelectric nanogenerator for energy harvesting and self-powered positioning system

被引:1
|
作者
Zhao, Yangjiu [1 ]
Yu, Haoran [1 ]
Cao, Ruirui [1 ,2 ,4 ]
Liu, Ying [1 ]
Shen, Shaowei [1 ]
Li, Xin [1 ]
Wu, Haoyi [1 ]
Sun, Dequan [1 ,3 ]
Liu, Haihui [3 ]
Pan, Caofeng [2 ]
机构
[1] Henan Univ, Sch Future Technol, Henan Key Lab Quantum Mat & Quantum Energy, Kaifeng 475004, Peoples R China
[2] Beihang Univ, Inst Atom Mfg, Int Res Inst Multidisciplinary Sci, Beijing 100191, Peoples R China
[3] Tiangong Univ, Sch Mat Sci & Engn, Tianjin 300387, Peoples R China
[4] Henan Univ, Engn Res Ctr Nanomat, Kaifeng 475004, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Triboelectric nanogenerator; Extreme environment; Durability; Thermal stability; Self-powered positioning; TEMPERATURE;
D O I
10.1016/j.nantod.2024.102616
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ensuring the effectiveness of triboelectric devices under extreme environmental temperatures is essential for the global implementation of TENG-driven self-powered electronics in various regions worldwide, but achieving this is substantial challenging. In this work, a thermally stable and flexible PVDF-HFP/SEBS (PHSSO) composite membrane doped with stearic acid (SA) and octanoic acid (OA) is constructed by the method of electrostatic spraying-assisted electrospinning. Compared with the original PHS membrane, the PHSSO membrane not only exhibits enhanced triboelectric output (Voc, Isc, and Q sc increased by 61.48 %, 77.11 %, and 46.16 % respectively), but also maintains a relatively stable triboelectric output from room temperature to a high-temperature environment of 60 degrees C, highlighting its remarkable reliability and stable power supply capability. Furthermore, the fabricated PH S1.5 S O1.5 triboelectric membrane exhibits outstanding hydrophobicity, flexibility, stretchability, and cyclic stability. These qualities render PH S1.5 S O1.5 based TENG to be an appealing self-powered positioning device, offering critical data such as time and location to adventurers and scientists operating in extreme Earth environments, thereby ensuring their safety. In summary, this study has developed a triboelectronegative fibrous membrane materials with excellent overall performance, which to some extent ensures the effective operation of TENG-driven self-powered devices in extreme temperature environments, providing good feasibility and successful case for applications in energy harvesting and human-machine interaction fields under harsh environments.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Fully stretchable triboelectric nanogenerator for energy harvesting and self-powered sensing
    Li, Xunjia
    Jiang, Chengmei
    Zhao, Fengnian
    Lan, Lingyi
    Yao, Yao
    Yu, Yonghua
    Ping, Jianfeng
    Ying, Yibin
    NANO ENERGY, 2019, 61 : 78 - 85
  • [2] Triboelectric Nanogenerator for Harvesting Wind Energy and as Self-Powered Wind Vector Sensor System
    Yang, Ya
    Zhu, Guang
    Zhang, Hulin
    Chen, Jun
    Zhong, Xiandai
    Lin, Zong-Hong
    Su, Yuanjie
    Bai, Peng
    Wen, Xiaonan
    Wang, Zhong Lin
    ACS NANO, 2013, 7 (10) : 9461 - 9468
  • [3] High-performance triboelectric nanogenerator based on chitin for mechanical-energy harvesting and self-powered sensing
    Zhang, Jipeng
    Hu, Yang
    Lin, Xinghuan
    Qian, Xinyi
    Zhang, Lina
    Zhou, Jinping
    Lu, Ang
    CARBOHYDRATE POLYMERS, 2022, 291
  • [4] Wearable and humidity-resistant biomaterials-based triboelectric nanogenerator for high entropy energy harvesting and self-powered sensing
    Zheng, Ning
    Xue, Jiehui
    Jie, Yang
    Cao, Xia
    Wang, Zhong Lin
    NANO RESEARCH, 2022, 15 (07) : 6213 - 6219
  • [5] Wearable and humidity-resistant biomaterials-based triboelectric nanogenerator for high entropy energy harvesting and self-powered sensing
    Ning Zheng
    Jiehui Xue
    Yang Jie
    Xia Cao
    Zhong Lin Wang
    Nano Research, 2022, 15 : 6213 - 6219
  • [6] Self-powered energy conversion and energy storage system based on triboelectric nanogenerator
    Han, Yu
    Wang, Wenqiang
    Zou, Jingdian
    Li, Zhen
    Cao, Xia
    Xu, Shengming
    NANO ENERGY, 2020, 76
  • [7] Water Energy Harvesting and Self-Powered Visible Light Communication Based on Triboelectric Nanogenerator
    Wang, Jie
    Zhang, Hulin
    Xie, Xiaoyu
    Gao, Min
    Yang, Weiqing
    Lin, Yuan
    ENERGY TECHNOLOGY, 2018, 6 (10) : 1929 - 1934
  • [8] Bioinspired stretchable triboelectric nanogenerator as energy-harvesting skin for self-powered electronics
    Wang, Xiaofeng
    Yin, Yajiang
    Yi, Fang
    Dai, Keren
    Niu, Simiao
    Han, Yingzhou
    Zhang, Yue
    You, Zheng
    NANO ENERGY, 2017, 39 : 429 - 436
  • [9] Advances and prospects of triboelectric nanogenerator for self-powered system
    An, Xuyao
    Wang, Chunnan
    Shao, Ruomei
    Sun, Shuqing
    INTERNATIONAL JOURNAL OF SMART AND NANO MATERIALS, 2021, 12 (03) : 233 - 255
  • [10] Self-Powered Electrospinning System Driven by a Triboelectric Nanogenerator
    Li, Congju
    Yin, Yingying
    Wang, Bin
    Zhou, Tao
    Wang, Jiaona
    Luo, Jianjun
    Tang, Wei
    Cao, Ran
    Yuan, Zuqing
    Li, Nianwu
    Du, Xinyu
    Wang, Chunru
    Zhao, Shuyu
    Liu, Yuebo
    Wang, Zhong Lin
    ACS NANO, 2017, 11 (10) : 10439 - 10445