Evaluation of T Cell Receptor Construction Methods from scRNA-Seq Data

被引:0
作者
Tian, Ruonan [1 ,2 ,3 ]
Yu, Zhejian [1 ]
Xue, Ziwei [1 ,2 ,3 ]
Wu, Jiaxin [1 ]
Wu, Lize [2 ,3 ,4 ,5 ]
Cai, Shuo [1 ]
Gao, Bing [1 ]
He, Bing [6 ]
Zhao, Yu [6 ]
Yao, Jianhua [6 ]
Lu, Linrong [2 ,3 ,4 ,5 ,7 ]
Liu, Wanlu [1 ,2 ,3 ]
机构
[1] Zhejiang Univ, Affiliated Hosp 2, Sch Med, Dept Rheumatol & Immunol, Hangzhou 310003, Peoples R China
[2] Zhejiang Univ, Univ Edinburgh Inst, Sch Med, Ctr Biomed Syst & Informat, Hangzhou 310003, Peoples R China
[3] Zhejiang Univ, Innovat Ctr Yangtze River Delta, Future Hlth Lab, Jiaxing 314100, Peoples R China
[4] Zhejiang Univ, Inst Immunol, Sch Med, Hangzhou 310058, Peoples R China
[5] Zhejiang Univ, Sir Run Run Shaw Hosp, Sch Med, Dept Dermatol & Rheumatol, Hangzhou 310058, Peoples R China
[6] AI Lab, Tencent, Shenzhen 518000, Peoples R China
[7] Shanghai Jiao Tong Univ, Affiliated Renji Hosp, Shanghai Immune Therapy Inst, Sch Med, Shanghai 200025, Peoples R China
来源
GENOMICS PROTEOMICS & BIOINFORMATICS | 2025年 / 22卷 / 06期
基金
中国国家自然科学基金;
关键词
T cell receptor; scRNA-seq; Benchmark analysis; TCR construction; Adaptive immunity; CLONALITY INFERENCE; READ ALIGNMENT; REPERTOIRE; SEQUENCES; HEALTH;
D O I
10.1093/gpbjnl/qzae086
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
T cell receptors (TCRs) serve key roles in the adaptive immune system by enabling recognition and response to pathogens and irregular cells. Various methods have been developed for TCR construction from single-cell RNA sequencing (scRNA-seq) datasets, each with its unique characteristics. Yet, a comprehensive evaluation of their relative performance under different conditions remains elusive. In this study, we conducted a benchmark analysis utilizing experimental single-cell immune profiling datasets. Additionally, we introduced a novel simulator, YASIM-scTCR (Yet Another SIMulator for single-cell TCR), capable of generating scTCR-seq reads containing diverse TCR-derived sequences with different sequencing depths and read lengths. Our results consistently showed that TRUST4 and MiXCR outperformed others across multiple datasets, while DeRR demonstrated considerable accuracy. We also discovered that the sequencing depth inherently imposes a critical constraint on successful TCR construction from scRNA-seq data. In summary, we present a benchmark study to aid researchers in choosing the appropriate method for reconstructing TCRs from scRNA-seq data.
引用
收藏
页数:14
相关论文
共 51 条
[21]  
Stubbington MJT, Lonnberg T, Proserpio V, Clare S, Speak AO, Dougan G, Et al., T cell fate and clonality inference from single- cell transcriptomes, Nat Methods, 13, pp. 329-332, (2016)
[22]  
Mose LE, Selitsky SR, Bixby LM, Marron DL, Iglesia MD, Serody JS, Et al., Assembly-based inference of B-cell receptor repertoires from short read RNA sequencing data with V'DJer, Bioinformatics, 32, pp. 3729-3734, (2016)
[23]  
Canzar S, Neu KE, Tang Q, Wilson PC, Khan AA., BASIC: BCR assembly from single cells, Bioinformatics, 33, pp. 425-427, (2017)
[24]  
Upadhyay AA, Kauffman RC, Wolabaugh AN, Cho A, Patel NB, Reiss SM, Et al., BALDR: A computational pipeline for paired heavy and light chain immunoglobulin reconstruction in single- cell RNA-seq data, Genome Med, 10, (2018)
[25]  
Lindeman I, Emerton G, Mamanova L, Snir O, Polanski K, Qiao SW, Et al., BraCeR: B-cell-receptor reconstruction and clonality inference from single-cell RNA-seq, Nat Methods, 15, pp. 563-565, (2018)
[26]  
Rizzetto S, Koppstein DNP, Samir J, Singh M, Reed JH, Cai CH, Et al., B-cell receptor reconstruction from single-cell RNA-seq with VDJPuzzle, Bioinformatics, 34, pp. 2846-2847, (2018)
[27]  
Mandric I, Rotman J, Yang HT, Strauli N, Montoya DJ, Van Der Wey W, Et al., Profiling immunoglobulin repertoires across multiple human tissues using RNA sequencing, Nat Commun, 11, (2020)
[28]  
Chen SY, Liu CJ, Zhang Q, Guo AY., An ultra-sensitive T-cell receptor detection method for TCR-Seq and RNA-Seq data, Bioinformatics, 36, pp. 4255-4262, (2020)
[29]  
Song L, Cohen D, Ouyang Z, Cao Y, Hu X, Liu XS., TRUST4: Immune repertoire reconstruction from bulk and single-cell RNA- seq data, Nat Methods, 18, pp. 627-630, (2021)
[30]  
Langmead B, Trapnell C, Pop M, Salzberg SL., Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, Genome Biol, 10, (2009)