GCATRL: Using deep reinforcement learning to optimize knowledge graph completion

被引:0
|
作者
Zhang, Liping [1 ]
Xu, Minming [1 ]
Li, Song [1 ]
机构
[1] Harbin Univ Sci & Technol, Sch Comp Sci & Technol, Harbin 150080, Peoples R China
来源
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS | 2025年 / 19卷 / 03期
基金
国家重点研发计划;
关键词
Graph Convolutional Neural Network; Knowledge Graph Completion; Generative Adversarial Networks; Markov Process; Dual-Delay Deep Deterministic Policy Gradient based on Correlation and Attention Mechanisms;
D O I
10.3837/tiis.2025.03.005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Knowledge Graph Completion (KGC) holds significance across various applications, such as Q&A systems, search engines, and recommendation systems. However, employing deep reinforcement learning for this task encounters specific challenges, impacting completion accuracy and stability. These challenges include sparse rewards, intricate multi-step reasoning, absence of domain-specific rules, overestimation problems, and coupling issues of value and policy. In response, this paper presents GCATRL, a reinforcement learning model integrating the Dual-Delay Deep Deterministic Policy Gradient based on Correlation and Attention Mechanisms (CATD3) with Generative Adversarial Networks (GANs). Initially, we adopt graph convolutional neural network (GCN) for preprocessing to represent the relationships and entities in the knowledge graph as continuous vectors. Subsequently, we combined Wasserstein-GAN (WGAN) with the designed gated recurrent unit (HOGRU), introduced an attention mechanism to record the path trajectory sequence formed during the knowledge graph traversal process, and dynamically generated new subgraph at the appropriate time to ensure that the traversal process of the knowledge graph continues. Finally, CATD3 is used to optimize rewards and mitigate adversarial losses. We demonstrate through experimental results that the proposed model outperforms traditional algorithms on multiple tasks performed on multiple datasets.
引用
收藏
页码:790 / 810
页数:21
相关论文
共 50 条
  • [1] GRL: Knowledge graph completion with GAN-based reinforcement learning
    Wang, Qi
    Ji, Yuede
    Hao, Yongsheng
    Cao, Jie
    KNOWLEDGE-BASED SYSTEMS, 2020, 209
  • [2] DRGI: Deep Relational Graph Infomax for Knowledge Graph Completion
    Liang, Shuang
    Shao, Jie
    Zhang, Dongyang
    Zhang, Jiasheng
    Cui, Bin
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (03) : 2486 - 2499
  • [3] Improving Knowledge Graph Completion Using Soft Rules and Adversarial Learning
    TANG, Caifang
    RAO, Yuan
    YU, Hualei
    SUN, Ling
    CHENG, Jiamin
    WANG, Yutian
    CHINESE JOURNAL OF ELECTRONICS, 2021, 30 (04) : 623 - 633
  • [4] Improving Knowledge Graph Completion Using Soft Rules and Adversarial Learning
    TANG Caifang
    RAO Yuan
    YU Hualei
    SUN Ling
    CHENG Jiamin
    WANG Yutian
    ChineseJournalofElectronics, 2021, 30 (04) : 623 - 633
  • [5] Inductive Learning on Commonsense Knowledge Graph Completion
    Wang, Bin
    Wang, Guangtao
    Huang, Jing
    You, Jiaxuan
    Leskovec, Jure
    Kuo, C-C Jay
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [6] DSKG: A Deep Sequential Model for Knowledge Graph Completion
    Guo, Lingbing
    Zhang, Qingheng
    Ge, Weiyi
    Hu, Wei
    Qu, Yuzhong
    KNOWLEDGE GRAPH AND SEMANTIC COMPUTING: KNOWLEDGE COMPUTING AND LANGUAGE UNDERSTANDING (CCKS 2018), 2019, 957 : 65 - 77
  • [7] A dynamic graph attention network with contrastive learning for knowledge graph completion
    Xujiang Li
    Jie Hu
    Jingling Wang
    Tianrui Li
    World Wide Web, 2025, 28 (4)
  • [8] Learning Entity Type Embeddings for Knowledge Graph Completion
    Moon, Changsung
    Jones, Paul
    Samatova, Nagiza F.
    CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2017, : 2215 - 2218
  • [9] Graph2Seq: Fusion Embedding Learning for Knowledge Graph Completion
    Li, Weidong
    Zhang, Xinyu
    Wang, Yaqian
    Yan, Zhihuan
    Peng, Rong
    IEEE ACCESS, 2019, 7 : 157960 - 157971
  • [10] Disentangled Relational Graph Neural Network with Contrastive Learning for knowledge graph completion
    Yin, Hong
    Zhong, Jiang
    Li, Rongzhen
    Li, Xue
    KNOWLEDGE-BASED SYSTEMS, 2024, 295