Outer approximation for generalized convex mixed-integer nonlinear robust optimization problems

被引:0
作者
Kuchlbauer, Martina [1 ]
机构
[1] Univ Technol Nuremberg, Ulmenstr 52h, D-90443 Nurnberg, Germany
关键词
Robust optimization; Mixed-integer nonlinear optimization; Generalized convexity; Outer approximation; Bundle method; ALGORITHM;
D O I
10.1016/j.orl.2025.107243
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider mixed-integer nonlinear robust optimization problems with nonconvexities. In detail, the functions can be nonsmooth and generalized convex, i.e., f degrees-quasiconvex or f degrees-pseudoconvex. We propose a robust optimization method that requires no certain structure of the adversarial problem, but only approximate worst-case evaluations. The method integrates a bundle method, for continuous subproblems, into an outer approximation approach. We prove that our algorithm converges and finds an approximately robust optimal solution and propose robust gas transport as a suitable application.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] An Outer-Inner Approximation for Separable Mixed-Integer Nonlinear Programs
    Hijazi, Hassan
    Bonami, Pierre
    Ouorou, Adam
    INFORMS JOURNAL ON COMPUTING, 2014, 26 (01) : 31 - 44
  • [22] Linearization and parallelization schemes for convex mixed-integer nonlinear optimization
    Meenarli Sharma
    Prashant Palkar
    Ashutosh Mahajan
    Computational Optimization and Applications, 2022, 81 : 423 - 478
  • [23] Generalized Benders Decomposition Method to Solve Big Mixed-Integer Nonlinear Optimization Problems with Convex Objective and Constraints Functions
    Karbowski, Andrzej
    ENERGIES, 2021, 14 (20)
  • [24] Mixed-integer nonlinear optimization
    Belotti, Pietro
    Kirches, Christian
    Leyffer, Sven
    Linderoth, Jeff
    Luedtke, James
    Mahajan, Ashutosh
    ACTA NUMERICA, 2013, 22 : 1 - 131
  • [25] Sparse convex optimization toolkit: a mixed-integer framework
    Olama, Alireza
    Camponogara, Eduardo
    Kronqvist, Jan
    OPTIMIZATION METHODS & SOFTWARE, 2023, 38 (06) : 1269 - 1295
  • [26] Parallel Global Optimization for Non-convex Mixed-Integer Problems
    Barkalov, Konstantin
    Lebedev, Ilya
    SUPERCOMPUTING (RUSCDAYS 2019), 2019, 1129 : 98 - 109
  • [27] GENERATING FEASIBLE POINTS FOR MIXED-INTEGER CONVEX OPTIMIZATION PROBLEMS BY INNER PARALLEL CUTS
    Neumann, Christoph
    Stein, Oliver
    SIAM JOURNAL ON OPTIMIZATION, 2021, 31 (03) : 2396 - 2428
  • [28] Improved quadratic cuts for convex mixed-integer nonlinear programs
    Su, Lijie
    Tang, Lixin
    Bernal, David E.
    Grossmann, Ignacio E.
    COMPUTERS & CHEMICAL ENGINEERING, 2018, 109 : 77 - 95
  • [30] An algorithm for two-stage stochastic mixed-integer nonlinear convex problems
    E. Mijangos
    Annals of Operations Research, 2015, 235 : 581 - 598