Smartwatch ECG and artificial intelligence in detecting acute coronary syndrome compared to traditional 12-lead ECG

被引:0
作者
Choi, Jina [1 ]
Kim, Joonghee [2 ,3 ]
Spaccarotella, Carmen [4 ]
Esposito, Giovanni [4 ]
Oh, Il-Young [1 ]
Cho, Youngjin [1 ,3 ]
Indolfi, Ciro [5 ,6 ]
机构
[1] Seoul Natl Univ, Bundang Hosp, Dept Internal Med, Cardiovasc Ctr, Seongnam, South Korea
[2] Seoul Natl Univ, Bundang Hosp, Dept Emergency Med, Seongnam, South Korea
[3] ARPI Inc, Seongnam, South Korea
[4] Univ Naples Federico II, Dept Adv Biomed Sci, Div Cardiol, Naples, Italy
[5] Univ Calabria, Cardiovasc Ctr, Arcavacata Di Rende, Italy
[6] Univ Calabria, Dept Pharm Hlth & Nutr Sci, Arcavacata Di Rende, Italy
来源
IJC HEART & VASCULATURE | 2025年 / 56卷
关键词
Acute Coronary Syndrome; Smartwatch ECG; Artificial Intelligence; Diagnostic Performance; ELEVATION MYOCARDIAL-INFARCTION; ST-SEGMENT ELEVATION; OCCLUSION; PERFORMANCE;
D O I
10.1016/j.ijcha.2024.101573
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Acute coronary syndromes (ACS) require prompt diagnosis through initial electrocardiograms (ECG), but ECG machines are not always accessible. Meanwhile, smartwatches offering ECG functionality have become widespread. This study evaluates the feasibility of an image-based ECG analysis artificial intelligence (AI) system with smartwatch-based multichannel, asynchronous ECG for diagnosing ACS. Methods: Fifty-six patients with ACS and 15 healthy participants were included, and their standard 12-lead and smartwatch-based 9-lead ECGs were analyzed. The ACS group was categorized into ACS with acute total occlusion (ACS-O(+), culprit stenosis >= 99 %, n = 44) and ACS without occlusion (ACS-O(-), culprit stenosis 70 % to < 99 %, n = 12) based on coronary angiography. A deep learning-based AI-ECG tool interpreting 2-dimensional ECG images generated probability scores for ST-elevation myocardial infarction (qSTEMI), ACS (qACS), and myocardial injury (qMI: troponin I > 0.1 ng/mL). Results: The AI-driven qSTEMI, qACS, and qMI demonstrated correlation coefficients of 0.882, 0.874, and 0.872 between standard and smartwatch ECGs (all P < 0.001). The qACS score effectively distinguished ACS-O(+/-) from control, with AUROC for both ECGs (0.991 for standard and 0.987 for smartwatch, P = 0.745). The AUROC of qSTEMI in identifying ACS-O(+) from control was 0.989 and 0.982 with 12-lead and smartwatch (P = 0.617). Discriminating ACS-O(+) from ACS-O(-) or control presented a slight challenge, with an AUROC for qSTEMI of 0.855 for 12-lead and 0.880 for smartwatch ECGs (P = 0.352). Conclusion: AI-ECG scores from standard and smartwatch-based ECGs showed high concordance with comparable diagnostic performance in differentiating ACS-O(+) and ACS-O(-). With increasing accessibility smartwatch accessibility, they may hold promise for aiding ACS diagnosis, regardless of location.
引用
收藏
页数:7
相关论文
共 21 条
  • [1] Machine learning-based prediction of acute coronary syndrome using only the pre-hospital 12-lead electrocardiogram
    Al-Zaiti S.
    Besomi L.
    Bouzid Z.
    Faramand Z.
    Frisch S.
    Martin-Gill C.
    Gregg R.
    Saba S.
    Callaway C.
    Sejdić E.
    [J]. Nature Communications, 11 (1)
  • [2] Machine learning for ECG diagnosis and risk stratification of occlusion myocardial infarction
    Al-Zaiti, Salah S.
    Martin-Gill, Christian
    Zegre-Hemsey, Jessica K.
    Bouzid, Zeineb
    Faramand, Ziad
    Alrawashdeh, Mohammad O.
    Gregg, Richard E.
    Helman, Stephanie
    Riek, Nathan T.
    Kraevsky-Phillips, Karina
    Clermont, Gilles
    Akcakaya, Murat
    Sereika, Susan M.
    Van Dam, Peter
    Smith, Stephen W.
    Birnbaum, Yochai
    Saba, Samir
    Sejdic, Ervin
    Callaway, Clifton W.
    [J]. NATURE MEDICINE, 2023, 29 (07) : 1804 - +
  • [3] DIagnostic accuracy oF electrocardiogram for acute coronary OCClUsion resuLTing in myocardial infarction (DIFOCCULT Study)
    Aslanger, Emre K.
    Yildirimturk, Ozlem
    Baris, Simsek
    Bozbeyoglu, Emrah
    Simsek, Mustafa Aytek
    Karabay, Can Yucel
    Smith, Stephen W.
    Degertekin, Muzaffer
    [J]. IJC HEART & VASCULATURE, 2020, 30
  • [4] Avila Cesar O, 2019, Perm J, V23, DOI 10.7812/TPP/19-025
  • [5] Smartwatch Algorithm for Automated Detection of Atrial Fibrillation
    Bumgarner, Joseph M.
    Lambert, Cameron T.
    Hussein, Ayman A.
    Cantillon, Daniel J.
    Baranowski, Bryan
    Wolski, Kathy
    Lindsay, Bruce D.
    Wazni, Oussama M.
    Tarakji, Khaldoun G.
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2018, 71 (21) : 2381 - 2388
  • [6] Artificial intelligence versus physicians on interpretation of printed ECG images: Diagnostic performance of ST-elevation myocardial infarction on electrocardiography
    Choi, Yoo Jin
    Park, Min Ji
    Ko, Yura
    Soh, Moon-Seung
    Kim, Hyue Mee
    Kim, Chee Hae
    Lee, Eunkyoung
    Kim, Joonghee
    [J]. INTERNATIONAL JOURNAL OF CARDIOLOGY, 2022, 363 : 6 - 10
  • [7] False activation of the cardiac catheterization laboratory: The price to pay for shorter treatment delay
    Degheim, George
    Berry, Abeer
    Zughaib, Marcel
    [J]. JRSM CARDIOVASCULAR DISEASE, 2019, 8
  • [8] Anatomic distribution of the culprit lesion in patients with non-ST-segment elevation myocardial infarction undergoing percutaneous coronary intervention - Findings from the national cardiovascular data registry
    Dixon, William C.
    Wang, Tracy Y.
    Dai, David
    Shunk, Kendrick A.
    Peterson, Eric D.
    Roe, Matthew T.
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2008, 52 (16) : 1347 - 1348
  • [9] Performance of a Convolutional Neural Network and Explainability Technique for 12-Lead Electrocardiogram Interpretation
    Hughes, J. Weston
    Olgin, Jeffrey E.
    Avram, Robert
    Abreau, Sean A.
    Sittler, Taylor
    Radia, Kaahan
    Hsia, Henry
    Walters, Tomos
    Lee, Byron
    Gonzalez, Joseph E.
    Tison, Geoffrey H.
    [J]. JAMA CARDIOLOGY, 2021, 6 (11) : 1285 - 1295
  • [10] 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation
    Ibanez, Borja
    James, Stefan
    Agewall, Stefan
    Antunes, Manuel J.
    Bucciarelli-Ducci, Chiara
    Bueno, Hector
    Caforio, Alida L. P.
    Crea, Filippo
    Goudevenos, John A.
    Halvorsen, Sigrun
    Hindricks, Gerhard
    Kastrati, Adnan
    Lenzen, Mattie J.
    Prescott, Eva
    Roffi, Marco
    Valgimigli, Marco
    Varenhorst, Christoph
    Vranckx, Pascal
    Widimsky, Petr
    [J]. KARDIOLOGIA POLSKA, 2018, 76 (02) : 229 - 313