Ransomware Detection and Classification Using Machine Learning and Deep Learning

被引:0
|
作者
Ouerdi, Noura [1 ]
Mejjout, Brahim [1 ]
Laaroussi, Khadija [2 ]
Kasmi, Mohammed Amine [2 ]
机构
[1] Mohammed First Univ, ACSA Lab, Oujda, Morocco
[2] Mohammed First Univ, LARI Lab, Oujda, Morocco
来源
ADVANCES IN SMART MEDICAL, IOT & ARTIFICIAL INTELLIGENCE, VOL 1, ICSMAI 2024 | 2024年 / 11卷
关键词
Ransomware; Cybersecurity; Machine Learning; Deep Learning; LSTM; Random Forest; XGBoost; LightGBM; Classification; Prediction;
D O I
10.1007/978-3-031-66850-0_22
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the face of escalating ransomware threats, robust detection and classification methodologies are critical for safeguarding digital ecosystems. This study employs a comprehensive approach, combining advanced machine learning and deep learning (ML & DL) techniques, to enhance ransomware detection. Utilizing LSTM networks for deep learning and some methods such as Random Forest (RF), XGBoost, and LightGBM for machine learning-based classification, our models analyze subtle patterns indicative of ransomware behavior. By accurately classifying instances as benign or malicious, these models enable proactive defense measures. The results of this paper affirm the efficacy of our techniques and LSTM networks in enhancing ransomware detection and prediction capabilities, fortifying resilience against evolving cyber threats.
引用
收藏
页码:194 / 201
页数:8
相关论文
共 50 条
  • [21] Obfuscated Ransomware Family Classification Using Machine Learning
    Cassel, William
    Majd, Nahid Ebrahimi
    2023 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE, CSCI 2023, 2023, : 788 - 792
  • [22] Ransomware detection based on machine learning using memory features
    Aljabri, Malak
    Alhaidari, Fahd
    Albuainain, Aminah
    Alrashidi, Samiyah
    Alansari, Jana
    Alqahtani, Wasmiyah
    Alshaya, Jana
    EGYPTIAN INFORMATICS JOURNAL, 2024, 25
  • [23] Melanoma Classification using Machine Learning and Deep Learning
    Tran Anh Vu
    Pham Quang Son
    Dinh Nghia Hiep
    Hoang Quang Huy
    Nguyen Phan Kien
    Pham Thi Viet Huong
    2023 1ST INTERNATIONAL CONFERENCE ON HEALTH SCIENCE AND TECHNOLOGY, ICHST 2023, 2023,
  • [24] Machine Learning-Based Detection of Ransomware Using SDN
    Cusack, Greg
    Michel, Oliver
    Keller, Eric
    PROCEEDINGS OF THE 2018 ACM INTERNATIONAL WORKSHOP ON SECURITY IN SOFTWARE DEFINED NETWORKS & NETWORK FUNCTION VIRTUALIZATION (SDN-NFVSEC'18), 2018, : 1 - 6
  • [25] Ransomware Detection Using the Dynamic Analysis and Machine Learning: A Survey and Research Directions
    Urooj, Umara
    Al-rimy, Bander Ali Saleh
    Zainal, Anazida
    Ghaleb, Fuad A.
    Rassam, Murad A.
    APPLIED SCIENCES-BASEL, 2022, 12 (01):
  • [26] A Review on Android Ransomware Detection Using Deep Learning Techniques
    Alzahrani, Nisreen
    Alghazzawi, Daniyal
    11TH INTERNATIONAL CONFERENCE ON MANAGEMENT OF DIGITAL ECOSYSTEMS (MEDES), 2019, : 330 - 335
  • [27] Detection and Classification of Banana Leaf diseases using Machine Learning and Deep Learning Algorithms
    Vidhya, N. P.
    Priya, R.
    2022 IEEE 19TH INDIA COUNCIL INTERNATIONAL CONFERENCE, INDICON, 2022,
  • [28] Machine Learning Algorithms and Frameworks in Ransomware Detection
    Smith, Daryle
    Khorsandroo, Sajad
    Roy, Kaushik
    IEEE ACCESS, 2022, 10 : 117597 - 117610
  • [29] Epileptic Seizure Detection in EEG Signals Using Machine Learning and Deep Learning Techniques
    Kode, Hepseeba
    Elleithy, Khaled
    Almazaydeh, Laiali
    IEEE ACCESS, 2024, 12 : 80657 - 80668
  • [30] Explainable Ransomware Detection with Deep Learning Techniques
    Ciaramella, Giovanni
    Iadarola, Giacomo
    Martinelli, Fabio
    Mercaldo, Francesco
    Santone, Antonella
    JOURNAL OF COMPUTER VIROLOGY AND HACKING TECHNIQUES, 2024, 20 (02) : 317 - 330