Ransomware Detection and Classification Using Machine Learning and Deep Learning

被引:0
|
作者
Ouerdi, Noura [1 ]
Mejjout, Brahim [1 ]
Laaroussi, Khadija [2 ]
Kasmi, Mohammed Amine [2 ]
机构
[1] Mohammed First Univ, ACSA Lab, Oujda, Morocco
[2] Mohammed First Univ, LARI Lab, Oujda, Morocco
来源
ADVANCES IN SMART MEDICAL, IOT & ARTIFICIAL INTELLIGENCE, VOL 1, ICSMAI 2024 | 2024年 / 11卷
关键词
Ransomware; Cybersecurity; Machine Learning; Deep Learning; LSTM; Random Forest; XGBoost; LightGBM; Classification; Prediction;
D O I
10.1007/978-3-031-66850-0_22
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the face of escalating ransomware threats, robust detection and classification methodologies are critical for safeguarding digital ecosystems. This study employs a comprehensive approach, combining advanced machine learning and deep learning (ML & DL) techniques, to enhance ransomware detection. Utilizing LSTM networks for deep learning and some methods such as Random Forest (RF), XGBoost, and LightGBM for machine learning-based classification, our models analyze subtle patterns indicative of ransomware behavior. By accurately classifying instances as benign or malicious, these models enable proactive defense measures. The results of this paper affirm the efficacy of our techniques and LSTM networks in enhancing ransomware detection and prediction capabilities, fortifying resilience against evolving cyber threats.
引用
收藏
页码:194 / 201
页数:8
相关论文
共 50 条
  • [1] Ransomware Detection using Machine and Deep Learning Approaches
    Alsaidi, Ramadhan A. M.
    Yafooz, Wael M. S.
    Alolofi, Hashem
    Taufiq-Hail, Ghilan Al-Madhagy
    Emara, Abdel-Hamid M.
    Abdel-Wahab, Ahmed
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (11) : 112 - 119
  • [2] Ransomware Classification and Detection With Machine Learning Algorithms
    Masum, Mohammad
    Faruk, Md Jobair Hossain
    Shahriar, Hossain
    Qian, Kai
    Lo, Dan
    Adnan, Muhaiminul Islam
    2022 IEEE 12TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2022, : 316 - 322
  • [3] Ransomware Detection Using Machine Learning: A Survey
    Alraizza, Amjad
    Algarni, Abdulmohsen
    BIG DATA AND COGNITIVE COMPUTING, 2023, 7 (03)
  • [4] A Study on the Evolution of Ransomware Detection Using Machine Learning and Deep Learning Techniques
    Fernando, Damien Warren
    Komninos, Nikos
    Chen, Thomas
    IOT, 2020, 1 (02): : 551 - 604
  • [5] Classification and detection of natural disasters using machine learning and deep learning techniques: A review
    Abraham, Kibitok
    Abdelwahab, Moataz
    Abo-Zahhad, Mohammed
    EARTH SCIENCE INFORMATICS, 2024, 17 (02) : 869 - 891
  • [6] Machine Learning and Deep Learning for Plant Disease Classification and Detection
    Balafas, Vasileios
    Karantoumanis, Emmanouil
    Louta, Malamati
    Ploskas, Nikolaos
    IEEE ACCESS, 2023, 11 : 114352 - 114377
  • [7] Classification and detection of natural disasters using machine learning and deep learning techniques: A review
    Kibitok Abraham
    Moataz Abdelwahab
    Mohammed Abo-Zahhad
    Earth Science Informatics, 2024, 17 : 869 - 891
  • [8] Hemp Disease Detection and Classification Using Machine Learning and Deep Learning
    Bose, Bipasa
    Priya, Jyotsna
    Welekar, Sonam
    Gao, Zeyu
    2020 IEEE INTL SYMP ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, INTL CONF ON BIG DATA & CLOUD COMPUTING, INTL SYMP SOCIAL COMPUTING & NETWORKING, INTL CONF ON SUSTAINABLE COMPUTING & COMMUNICATIONS (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2020), 2020, : 762 - 769
  • [9] Ransomware Detection in Executable Files Using Machine Learning
    Ganta, Venkata Gopi
    Harish, G. Venkata
    Kumar, V. Prem
    Rao, G. Rama Koteswar
    2020 5TH IEEE INTERNATIONAL CONFERENCE ON RECENT TRENDS ON ELECTRONICS, INFORMATION, COMMUNICATION & TECHNOLOGY (RTEICT-2020), 2020, : 282 - 286
  • [10] Deep Learning LSTM based Ransomware Detection
    Maniath, Sumith
    Ashok, Aravind
    Poornachandran, Prabaharan
    Sujadevi, V. G.
    Sankar, Prem A. U.
    Jan, Srinath
    2017 RECENT DEVELOPMENTS IN CONTROL, AUTOMATION AND POWER ENGINEERING (RDCAPE), 2017, : 442 - 446