Multi-modal Robustness Fake News Detection with Cross-Modal and Propagation Network Contrastive Learning

被引:0
|
作者
Chen, Han [1 ,2 ]
Wang, Hairong [1 ]
Liu, Zhipeng [1 ]
Li, Yuhua [1 ]
Hu, Yifan [3 ]
Zhang, Yujing [1 ]
Shu, Kai [4 ]
Li, Ruixuan [1 ]
Yu, Philip S. [5 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Inst Artificial Intelligence, Wuhan 430074, Peoples R China
[3] Univ Sydney, Sch Comp Sci, Sydney 2006, Australia
[4] Emory Univ, Dept Comp Sci, Atlanta, GA 30322 USA
[5] Univ Illinois, Dept Comp Sci, Chicago, IL 60607 USA
基金
中国国家自然科学基金;
关键词
Contrastive learning; Multi-modal; Fake news detection; Limited labeled data; Mismatched pairs scenario;
D O I
10.1016/j.knosys.2024.112800
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Social media has transformed the landscape of news dissemination, characterized by its rapid, extensive, and diverse content, coupled with the challenge of verifying authenticity. The proliferation of multimodal news on these platforms has presented novel obstacles in detecting fake news. Existing approaches typically focus on single modalities, such as text or images, or combine text and image content or with propagation network data. However, the potential for more robust fake news detection lies in considering three modalities simultaneously. In addition, the heavy reliance on labeled data in current detection methods proves time-consuming and costly. To address these challenges, we propose a novel approach, M ulti-modal Robustness F ake News Detection with Cross-Modal and Propagation Network C ontrastive L earning (MFCL). This method integrates intrinsic features from text, images, and propagation networks, capturing essential intermodal relationships for accurate fake news detection. Contrastive learning is employed to learn intrinsic features while mitigating the issue of limited labeled data. Furthermore, we introduce image-text matching (ITM) data augmentation to ensure consistent image-text representations and employ adaptive propagation (AP) network data augmentation for high-order feature learning. We utilize contextual transformers to bolster the effectiveness of fake news detection, unveiling crucial intermodal connections in the process. Experimental results on real-world datasets demonstrate that MFCL outperforms existing methods, maintaining high accuracy and robustness even with limited labeled data and mismatched pairs. Our code is available at https://github.com/HanChen-HUST/KBSMFCL.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Multi-Modal Fake News Detection via Bridging the Gap between Modals
    Liu, Peng
    Qian, Wenhua
    Xu, Dan
    Ren, Bingling
    Cao, Jinde
    ENTROPY, 2023, 25 (04)
  • [32] Fake News Detection via Multi-scale Semantic Alignment and Cross-modal Attention
    Wang, Jiandong
    Zhang, Hongguang
    Liu, Chun
    Yang, Xiongjun
    PROCEEDINGS OF THE 47TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2024, 2024, : 2406 - 2410
  • [33] Multi-modal deep fusion based fake news detection method
    Jing Q.
    Fan X.
    Wang B.
    Bi J.
    Tan H.
    High Technology Letters, 2022, 32 (04) : 392 - 403
  • [34] MHR: A Multi-Modal Hyperbolic Representation Framework for Fake News Detection
    Feng, Shanshan
    Yu, Guoxin
    Liu, Dawei
    Hu, Han
    Luo, Yong
    Lin, Hui
    Ong, Yew-Soon
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2025, 37 (04) : 2015 - 2028
  • [35] Enhancing Fake News Detection in Social Media via Label Propagation on Cross-modal Tweet Graph
    Zhao, Wanqing
    Nakashima, Yuta
    Chen, Haiyuan
    Babaguchi, Noboru
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 2400 - 2408
  • [36] Contrastive cross-modal clustering with twin network
    Mao, Yiqiao
    Yan, Xiaoqiang
    Hu, Shizhe
    Ye, Yangdong
    PATTERN RECOGNITION, 2024, 155
  • [37] Modality and Event Adversarial Networks for Multi-Modal Fake News Detection
    Wei, Pengfei
    Wu, Fei
    Sun, Ying
    Zhou, Hong
    Jing, Xiao-Yuan
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 1382 - 1386
  • [38] Cross-Modal Contrastive Learning for Code Search
    Shi, Zejian
    Xiong, Yun
    Zhang, Xiaolong
    Zhang, Yao
    Li, Shanshan
    Zhu, Yangyong
    2022 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE AND EVOLUTION (ICSME 2022), 2022, : 94 - 105
  • [39] Cross-modal augmentation for few-shot multimodal fake news detection
    Jiang, Ye
    Wang, Taihang
    Xu, Xiaoman
    Wang, Yimin
    Song, Xingyi
    Maynard, Diana
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 142
  • [40] Cross-Modal Fine-Grained Interaction Fusion in Fake News Detection
    Che, Zhanbin
    Cui, GuangBo
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (05) : 945 - 956