Adaptation of plantations to drought events in arid and semi-arid regions: Evidence from tree resilience

被引:0
|
作者
Zhang, Xu [1 ]
Chen, Meng [1 ,2 ]
Shao, Taoying [3 ]
Zhang, Guangqi [4 ]
Duan, Qiuxiao [1 ]
Wang, Xiaochun [5 ]
Cao, Yang [1 ,6 ]
机构
[1] Northwest A&F Univ, Coll Forestry, Yangling 712100, Peoples R China
[2] Ctr Ecol Res & Forestry Applicat, Barcelona 08193, Spain
[3] Northwest A&F Univ, Coll Soil & Water Conservat Sci & Engn, Yangling 712100, Peoples R China
[4] Univ Lorraine, Ctr Rech Grand Est Nancy, SILVA, INRAE,AgroParisTech, F-54280 Champenoux, France
[5] Northeast Forestry Univ, Sch Ecol, Harbin 150040, Peoples R China
[6] Chinese Acad Sci & Minist Water Resources, Inst Soil & Water Conservat, Yangling 712100, Peoples R China
关键词
Dendroecology; Drought; Forest plantations; Resistance; Recovery; LOESS PLATEAU; CARBON BALANCE; DOUGLAS-FIR; MORTALITY; SOIL; TEMPERATURE; MECHANISMS; FORESTS; DECLINE;
D O I
10.1016/j.foreco.2024.122437
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Increasing drought frequency and severity pose a significant risk to global forest plantations, particularly in arid and semi-arid regions. Developing drought-adaptive plantations is particularly important for vegetation restoration in the context of climate warming. Despite the importance of drought response and adaptation, systematic research on these aspects for major tree species remains limited. Here, we collected 467 tree ring cores from eight paired sites of Robinia pseudoacacia L. (a broad-leaved species) and Pinus tabulaeformis C. (a coniferous species) plantations across a typical semi-arid region of the Loess Plateau (LP) to discern the climate-growth patterns of both species using linear mixed models. We employed hypothesis testing to analyze the differences in tree resilience metrics, including drought resistance and recovery ability, and linear mixed models combined with partial least squares path analysis to clarify the driving factors of tree resilience between R. pseudoacacia and P. tabulaeformis. Our findings demonstrated that Palmer Drought Severity Indices is the key limiting climate factor, without spatial variation, on the growth of R. pseudoacacia and P. tabulaeformis, explaining 47.7 % and 69.8 % of the variables effect percentage, respectively. Compared to P. tabulaeformis, R. pseudoacacia is more limited by atmospheric drought stress and soil moisture, with 11.0 % and 17.9 % of the explained effect percentage, respectively. R. pseudoacacia exhibited lower drought resistance ability, evidenced by a lower resistance (the average value is 0.62) and a higher average growth reduction (0.20) than P. tabulaeformis (0.85 and 0.17, respectively). In contrast, R. pseudoacacia had higher drought recovery ability, evidenced by a higher recovery (the average value is 1.19), a shorter recovery period (1.0), and a faster average recovery rate (0.14), than P. tabulaeformis (1.07, 2.0, and 0.08, respectively). Importantly, all tree resilience metrics for both species exhibited spatial consistency across the LP. Tree characteristics had a stronger effect on drought resistance and recovery ability in R. pseudoacacia than in P. tabulaeformis. Soil properties improved R. pseudoacacia drought resistance ability and reduced its drought recovery ability, but had weaker effects on P. tabulaeformis. Additionally, tree size and age strongly influence tree resilience in R. pseudoacacia through preceding year tree growth of drought events and climate sensitivity. These findings underscore the complementary drought resilience of broad-leaved and coniferous species, emphasizing the necessity for adaptive plantations and diversified tree species plantations as a strategic response to the anticipated increase in drought frequency and severity in arid and semi-arid regions.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Recharge to groundwater in arid and semi-arid regions from the Holocene to the present
    Edmunds, WM
    QUATERNARY DESERTS AND CLIMATIC CHANGE, 1998, : 419 - 431
  • [22] The characterisation of rainfall in the arid and semi-arid regions of Ethiopia
    Tilahun, Ketema
    WATER SA, 2006, 32 (03) : 429 - 436
  • [23] Soil degradation and restoration in arid and semi-arid regions
    Wang, Kaibo
    Li, Jianping
    Zhou, Zhengchao
    Zhang, Xunchang John
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2023, 11
  • [24] ENVIRONMENTAL EFFECTS OF IRRIGATION IN ARID AND SEMI-ARID REGIONS
    Fernandez-Cirelli, Alicia
    Luis Arumi, Jose
    Rivera, Diego
    Boochs, Peter W.
    CHILEAN JOURNAL OF AGRICULTURAL RESEARCH, 2009, 69 : 27 - 40
  • [25] Qanat, a source of sustainability in arid and semi-arid regions
    Yazdandoost, F.
    GROUNDWATER MODELING AND MANAGEMENT UNDER UNCERTAINTY, 2012, : 65 - 68
  • [26] A note on the thrips of the arid and semi-arid regions of Rajasthan
    Parihar, DR
    Singh, MP
    ANNALS OF ARID ZONE, 1997, 36 (01) : 73 - 74
  • [27] Groundwater quality and geochemistry in arid and semi-arid regions
    Ramlah
    INTERNATIONAL GEOLOGY REVIEW, 2024, 66 (21) : 3767 - 3769
  • [28] Rainfall trends in arid and semi-arid regions of Iran
    Modarres, Reza
    Rodrigues da Silva, Vicente de Paulo
    JOURNAL OF ARID ENVIRONMENTS, 2007, 70 (02) : 344 - 355
  • [29] Response of total primary productivity of vegetation to meteorological drought in arid and semi-arid regions of China
    Shi, Jianyang
    Liu, Minxia
    Li, Yu
    Guan, Chengxuan
    JOURNAL OF ARID ENVIRONMENTS, 2025, 228
  • [30] An investigation of drought magnitude trend during 1975–2005 in arid and semi-arid regions of Iran
    Mostafa Moradi Dashtpagerdi
    Mohammad Reza Kousari
    Hassan Vagharfard
    Diba Ghonchepour
    Mitra Esmaeilzadeh Hosseini
    Hossein Ahani
    Environmental Earth Sciences, 2015, 73 : 1231 - 1244