Dynamical-decoupling-protected unconventional nonadiabatic geometric quantum computation

被引:0
|
作者
Wu, Xuan [1 ,2 ]
Jin, Long-Yi [1 ]
Wang, Hong-Fu [2 ]
机构
[1] Yanbian Univ, Coll Sci, Dept Chem, Yanji 133002, Jilin, Peoples R China
[2] Yanbian Univ, Coll Sci, Dept Phys, Yanji 133002, Jilin, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
dynamical decoupling; unconventional nonadiabatic geometric gate; geometric phase;
D O I
10.1088/1402-4896/ada203
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Unconventional nonadiabatic geometric quantum computation not only possesses the geometric robustness of conventional ones but also avoids the need to remove the dynamical phase. Dynamical decoupling is a promising method to protect unconventional nonadiabatic geometric gates against decoherence. Here, we propose a protocol to implement unconventional nonadiabatic geometric quantum computation protected by dynamical decoupling. By using three physical qubits to encode a logical qubit and choosing a system Hamiltonian that commutes with the decoupling group, a universal set of dynamical-decoupling-protected unconventional nonadiabatic geometric gates can be realized. Our work maintains the robustness of unconventional nonadiabatic geometric gates while protecting quantum gates against both collective and independent decoherence.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Combining dynamical decoupling with fault-tolerant quantum computation
    Ng, Hui Khoon
    Lidar, Daniel A.
    Preskill, John
    PHYSICAL REVIEW A, 2011, 84 (01)
  • [32] Coherence-Protected Quantum Gate by Continuous Dynamical Decoupling in Diamond
    Xu, Xiangkun
    Wang, Zixiang
    Duan, Changkui
    Huang, Pu
    Wang, Pengfei
    Wang, Ya
    Xu, Nanyang
    Kong, Xi
    Shi, Fazhan
    Rong, Xing
    Du, Jiangfeng
    PHYSICAL REVIEW LETTERS, 2012, 109 (07)
  • [33] Protected Quantum Computing: Interleaving Gate Operations with Dynamical Decoupling Sequences
    Zhang, Jingfu
    Souza, Alexandre M.
    Brandao, Frederico Dias
    Suter, Dieter
    PHYSICAL REVIEW LETTERS, 2014, 112 (05)
  • [34] Implementing conventional and unconventional nonadiabatic geometric quantum gates via SU(2) transformations
    Cheng, Jian-jian
    Zhang, Lin
    PHYSICAL REVIEW A, 2021, 103 (03)
  • [35] Dynamical Decoupling of a Geometric Qubit
    Sekiguchi, Yuhei
    Komura, Yusuke
    Kosaka, Hideo
    PHYSICAL REVIEW APPLIED, 2019, 12 (05):
  • [36] Unconventional geometric quantum computation robust to residual crosstalk in a superconducting circuit
    Hong, Ying
    Cui, Fei-Fan
    Ji, Li-Na
    Xue, Zheng-Yuan
    Chen, Tao
    Physical Review Applied, 2024, 22 (06)
  • [37] Multiple-qubit nonadiabatic noncyclic geometric quantum computation in Rydberg atoms
    Guo, F-Q
    Zhu, X-Y
    Yun, M-R
    Yan, L-L
    Zhang, Y.
    Jia, Y.
    Su, S-L
    EPL, 2022, 137 (05)
  • [38] Nonadiabatic Geometric Quantum Computation by Straightway Varying Parameters of Magnetic: A New Design
    Y. H. Ji
    International Journal of Theoretical Physics, 2009, 48 : 2843 - 2848
  • [39] Geometric phase shift in quantum computation using superconducting nanocircuits: Nonadiabatic effects
    Zhu, Shi-Liang
    Wang, Z.D.
    Physical Review A - Atomic, Molecular, and Optical Physics, 2002, 66 (04): : 423221 - 423224
  • [40] Geometric phase shift in quantum computation using superconducting nanocircuits: Nonadiabatic effects
    Zhu, SL
    Wang, ZD
    PHYSICAL REVIEW A, 2002, 66 (04): : 4