Dynamical-decoupling-protected unconventional nonadiabatic geometric quantum computation

被引:0
|
作者
Wu, Xuan [1 ,2 ]
Jin, Long-Yi [1 ]
Wang, Hong-Fu [2 ]
机构
[1] Yanbian Univ, Coll Sci, Dept Chem, Yanji 133002, Jilin, Peoples R China
[2] Yanbian Univ, Coll Sci, Dept Phys, Yanji 133002, Jilin, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
dynamical decoupling; unconventional nonadiabatic geometric gate; geometric phase;
D O I
10.1088/1402-4896/ada203
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Unconventional nonadiabatic geometric quantum computation not only possesses the geometric robustness of conventional ones but also avoids the need to remove the dynamical phase. Dynamical decoupling is a promising method to protect unconventional nonadiabatic geometric gates against decoherence. Here, we propose a protocol to implement unconventional nonadiabatic geometric quantum computation protected by dynamical decoupling. By using three physical qubits to encode a logical qubit and choosing a system Hamiltonian that commutes with the decoupling group, a universal set of dynamical-decoupling-protected unconventional nonadiabatic geometric gates can be realized. Our work maintains the robustness of unconventional nonadiabatic geometric gates while protecting quantum gates against both collective and independent decoherence.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Nonadiabatic geometric quantum computation with shortened path on superconducting circuits
    Ding, Cheng-Yun
    Liang, Yan
    Yu, Kai-Zhi
    Xue, Zheng-Yuan
    APPLIED PHYSICS LETTERS, 2021, 119 (18)
  • [22] Nonadiabatic geometric quantum computation with optimal control on superconducting circuits
    Xu, Jing
    Li, Sai
    Chen, Tao
    Xue, Zheng-Yuan
    FRONTIERS OF PHYSICS, 2020, 15 (04)
  • [23] Nonadiabatic geometric quantum computation with optimal control on superconducting circuits
    Jing Xu
    Sai Li
    Tao Chen
    Zheng-Yuan Xue
    Frontiers of Physics, 2020, 15
  • [24] Dynamical invariants and nonadiabatic geometric phases in open quantum systems
    Sarandy, M. S.
    Duzzioni, E. I.
    Moussa, M. H. Y.
    PHYSICAL REVIEW A, 2007, 76 (05):
  • [25] Nonadiabatic geometric quantum computation in non-Hermitian systems
    Hou, Tian -Xiang
    Li, Wei
    PHYSICAL REVIEW A, 2024, 109 (02)
  • [26] Geometric quantum computation and dynamical invariant operators
    Wang, Z. S.
    PHYSICAL REVIEW A, 2009, 79 (02):
  • [27] Unconventional geometric quantum computation in a two-mode cavity
    Wu, Chunfeng
    Wang, Zisheng
    Feng, Xun-Li
    Goan, Hsi-Sheng
    Kwek, L. C.
    Lai, C. H.
    Oh, C. H.
    PHYSICAL REVIEW A, 2007, 76 (02):
  • [28] Rydberg-atom-based scheme of nonadiabatic geometric quantum computation
    Zhao, P. Z.
    Cui, Xiao-Dan
    Xu, G. F.
    Sjoqvist, Erik
    Tong, D. M.
    PHYSICAL REVIEW A, 2017, 96 (05)
  • [29] Path-optimized nonadiabatic geometric quantum computation on superconducting qubits
    Ding, Cheng-Yun
    Ji, Li-Na
    Chen, Tao
    Xue, Zheng-Yuan
    QUANTUM SCIENCE AND TECHNOLOGY, 2022, 7 (01)
  • [30] Nonadiabatic geometric quantum computation using a single-loop scenario
    Zhang, XD
    Zhu, SL
    Hu, L
    Wang, ZD
    PHYSICAL REVIEW A, 2005, 71 (01):