Dynamical-decoupling-protected unconventional nonadiabatic geometric quantum computation

被引:0
|
作者
Wu, Xuan [1 ,2 ]
Jin, Long-Yi [1 ]
Wang, Hong-Fu [2 ]
机构
[1] Yanbian Univ, Coll Sci, Dept Chem, Yanji 133002, Jilin, Peoples R China
[2] Yanbian Univ, Coll Sci, Dept Phys, Yanji 133002, Jilin, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
dynamical decoupling; unconventional nonadiabatic geometric gate; geometric phase;
D O I
10.1088/1402-4896/ada203
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Unconventional nonadiabatic geometric quantum computation not only possesses the geometric robustness of conventional ones but also avoids the need to remove the dynamical phase. Dynamical decoupling is a promising method to protect unconventional nonadiabatic geometric gates against decoherence. Here, we propose a protocol to implement unconventional nonadiabatic geometric quantum computation protected by dynamical decoupling. By using three physical qubits to encode a logical qubit and choosing a system Hamiltonian that commutes with the decoupling group, a universal set of dynamical-decoupling-protected unconventional nonadiabatic geometric gates can be realized. Our work maintains the robustness of unconventional nonadiabatic geometric gates while protecting quantum gates against both collective and independent decoherence.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Dynamical-decoupling-protected nonadiabatic holonomic quantum computation
    Zhao, P. Z.
    Wu, X.
    Tong, D. M.
    PHYSICAL REVIEW A, 2021, 103 (01)
  • [2] Nonadiabatic geometric quantum computation protected by dynamical decoupling via the XXZ Hamiltonian
    X. Wu
    P. Z. Zhao
    Frontiers of Physics, 2022, 17
  • [3] Nonadiabatic geometric quantum computation protected by dynamical decoupling via the XXZ Hamiltonian
    Wu, X.
    Zhao, P. Z.
    FRONTIERS OF PHYSICS, 2022, 17 (03)
  • [4] Nonadiabatic geometric quantum computation protected by dynamical decoupling via the XXZ Hamiltonian
    Wu X.
    Z. Zhao P.
    Frontiers of Physics, 2022, 17 (03)
  • [5] Quantum computation in silicon-vacancy centers based on nonadiabatic geometric gates protected by dynamical decoupling
    Yun, M. R.
    Wu, Jin-Lei
    Yan, L. L.
    Jia, Yu
    Su, Shi-Lei
    Shan, C. X.
    PHYSICAL REVIEW APPLIED, 2024, 21 (06):
  • [6] Universal nonadiabatic geometric gates protected by dynamical decoupling
    Wu, X.
    Zhao, P. Z.
    PHYSICAL REVIEW A, 2020, 102 (03)
  • [7] Coherence-protected nonadiabatic geometric quantum computation
    Li, K. Z.
    Xu, G. F.
    Tong, D. M.
    PHYSICAL REVIEW RESEARCH, 2021, 3 (02):
  • [8] Dynamical-corrected nonadiabatic geometric quantum computation
    Ding ChengYun
    Chen Li
    Zhang LiHua
    Xue ZhengYuan
    Frontiers of Physics, 2023, 18 (06)
  • [9] Dynamical-corrected nonadiabatic geometric quantum computation
    Ding, Cheng-Yun
    Chen, Li
    Zhang, Li-Hua
    Xue, Zheng-Yuan
    FRONTIERS OF PHYSICS, 2023, 18 (06)
  • [10] Robust nonadiabatic geometric quantum computation by dynamical correction
    Liang, Ming-Jie
    Xue, Zheng-Yuan
    PHYSICAL REVIEW A, 2022, 106 (01)